
LIFELINES™

$3.00 (SSN 0279-2575,USPS 597-830)July 1983 Volume IV, No. 1

Thomas Hill

All you dBASE II hotshots
are about to get what you
deserve.

I
tf® 1Illllllllllllllllllllll

You’ve written all those slick
dBASE II programs.

Business and personal
programs. Scientific and
educational applications.
Packages for just about
every conceivable informa-
tion handling need.

And everybody who
sees them loves them because
they're so powerful, friendly and easy to use.

But that’s just not good enough.
Uh-uh.
Because now you can get the gold and the

glory that you really deserve.

Here's how.
We’ve just released our dBASE II

RunTime™ application development module.
And it can turn you into an instant

software publisher.
The RunTime module condenses and

encodes your source files, protecting your
special insights and techniques, so you can
sell your code without giving the show away.

RunTime also protects your margins
and improves your price position in the
marketplace. If your client has dBASE II, all
he needs is your encoded application. If not,
all you need to install your application is the
much less expensive RunTime module.

We'll also provide additional “how to’’
information to get you off and running as a
software publisher sooner.

And we’ll make your products part of
our Marketing Referral Service. Besides put-
ting you on our referral hotline, we'll publish
your program descriptions and contact
information in dBASE II Applied, a directory
now in computer stores world-wide.

Go for it.
But we can't do any of this until we

hear from you.
For details, write RunTime Applications

Development, Ashton-Tate, 10150 West
Jefferson Boulevard, Culver City, CA 90230.

Or better yet, just call (213) dBASE
204-5570. And get what you
deserve today.

We'll tell the world.
With your license for the dBASE II

RunTime module, we provide labels that
identify your program as a dBASE II applica-
tion, and you get the benefit of all the
dBASE II marketing efforts.

ASHTON -TATE ■

©Ashton-Tate 1983.

Lifelines

The Software Magazine

Publisher: Edward H. Currie
Editor in Chief: Susan Sawyer
Production Manager: Kate Gartner
Technical Editor: Al Bloch
Art Director: Kate Gartner
Typographers: Paul Blockhaus, Rosalee Feibish

New Versions Editor: Lee Ramos
Advertising Manager: Carolann Abrams
Circulation Manager: Trina McDonald
Printing Consultant: Sid Robkoff/E&S Graphics
Dealer/Customer Service Manager: Crescent R. Varrone
Cover: Kate Gartner

Opinion

2 Editorial
Edward H. Currie

Features

19 Thunder Clock Routine
David W. Walker

27 Date Your Disks
3 Learning Not to Swear at Your DELETE Key

Mark R. Gardner
Andrew Hughes

30 VARPTR Cuts Path to CP/M
7 SpellStar Revisited

Robert P. VanNatta
John S. Coggeshall

Product Status Reports
. 10 MatheMagic and The Art of Formula

Evaluation
Davis A. Foulger

13 New Versions

32 New Products
15 Accessing the MP/M Operating System

From Within dBASE
Dr. Howard Vigorita

33 New Books

33 Bugs
17 Stockvue Reviewed

Robert P. VanNatta Miscellaneous

20 Demonstrating the High Precision Math In-
teger Library: Some Interesting Math

18 Users Group Corner

Programs
Thomas Hill

Software Notes

26 OOPS!

36 OOPS!

8 Tips & Techniques
Robert Pirko

Copyright © 1983, by Lifelines Publishing Corporation. No portion of this
publication may be reproduced without the written permission of the
publisher. The single issue price is $3.00 for copies sent to destinations
in the U.S., Canada, or Mexico. The single issue price for copies sent to
all other countries is $4.30. All checks should be made payable to Lifelines
Publishing Corporation. Foreign checks must be in U.S. dollars, drawn on
a U.S. bank; checks, money order, VISA, and MasterCard are aceptable.
All orders must be pre-paid. Please send all correspondence to the Publisher
at the address below.

Lifelines (ISSN 0279-2575,USPS 597-830) is published monthly at a subscrip-
tion price of $24 for twelve issues, when destined for the U.S. Canada,
or Mexico, $50 when destined for any other country. Second-class postage
paid at New York, New York, and other locations. POSTMASTER, please
send changes of address to Lifelines Publishing Corporation, 1651 Third
Avenue, New York, NY 10028.

Program names are generally TMs of their authors or owners. The CP/MUser Group is not affiliated with Digital
Research, Inc.
Lifelines—TM Lifelines Publishing Corp.
The Software Magazine—TM Lifelines Publishing Corp.
SB-80, SB-86—TMs Lifeboat Associates
CP/M and CP/M-86 reg. TMs, Access Manager, PLI-80, PLI-86, Pascal MT+, MP/M, TMs of Digital Research Inc.
BASIC-80, MBASIC, Fortran 80—TMs Microsoft, Inc.
KIBITS—TM Bess Garber
Wordmaster & WordStar-TMs MicroPro International Corp.
PMATE—TMs Phoenix Software Associates, Ltd.
Z80-TM Zilog Corp.
Mr. Edit—TM Micro Resource Corp.
MINCE-TM, Marl of the Unicorn

pinion _______
by Edward H. Currie

It has long been held that computer
dealers were the only significant
distribution channel for software.
The advent of software stores,
availability of software in bookstores
and departement stores, bundling of
software with hardware, etc., in-
dicates that all known distribution
channels are to utilized.
The use of micros for accounting pur-
poses has existed since Peachtree
released their first application
package. However the average micro
user is not an accountant and the
average small business can find more
appropriate uses for microcom-
puters. Floppy disk based systems
may not be appropriate for accoun-
ting functions even in the smallest of
businesses.
Hardware manufacturers con-
tinuously relearn certain inescapable
facts one of which is that an unhappy
customer means trouble. Whether
the customer is unhappy with the
hardware he purchased from either
the manufacturer or the manufac-
turer's representative or unhappy
with the software, the result is the
same, trouble. The end user is
unlikely to complain as much to the
dealer who sold him a two hundred
dollar package as to the person who
sold him the five thousand dollar
system which has become as useful
as a block of granite because of some
software problem.
While it is perhaps true that any bits
are better than no bits, a more pro-
found truth is the observation that a
computer is only as good as the soft-
ware available for it. Thirty two bit
machines will have a difficult time
replacing their sixteen bit counter-
parts until a good software library is
available.
The Japanese have so far not been
successful in finding mass distribu-
tion channels for their products in
the United States. Distribution
methods used for TV's, stereos, etc.,
are just not appropriate for the bulk
of the Japanese computer offerings.

(continued on page 34)

vironment and continues to be the
leading language in terms of
language sales, few of you are
writing programs in it. The reason is
simple. Few people are writing pro-
grams in any language and with the
advent of products such as the Lat-
tice C compiler, BASIC/Pascal have
taken a back seat.

Pascal continues to enjoy a great deal
of popularity but has been largely
"undone" because of extensions
which have had a serious impact
upon the portability of Pascal source
programs. C, a serious competitor,
remains a pure language and C com-
pilers for all machines are readily
available. The most important
criterion for determining the success
of a language is the number of ap-
plications written in the language. So
get busy, all you UCSD experts, and
produce a library of good
applications.

As to program generators, they are
touted by the diehards who are con-
vinced that complex programming
tasks can all be reduced to trivia if
one uses a program generator. The
fact that program generators are hav-
ing to struggle to get a foothold while
authors continue to write in Pascal
and C is sufficient evidence that such
applications are not to dominate.
'Eight bit is dead" is still widely
held, but only by those who think
that sixteen bit hardware is superior
to eight bit systems. This is hopefully
to be the case but cannot be until and
unless the same vast library of soft-
ware is available for sixteen bit
machines.
Computer hardware is becoming
cheaper and cheaper but the impor-
tant thing to realize here is that a
computer system has a software
component also. Software and more
importantly, software support show
little sign of becoming anything ex-
cept more expensive as time goes on,
and end users continue to demand
more and more sophistication, better
documentation, increased support.

Pogo Was Right
Last month we discussed a number
of "orbiter dictums" that had been
promulgated by the "experts" among
us. This month we will begin a
review of what happened to each of
these pontifications.
The first was the belief that multiuser
operating systems were important
for micros. When Intel designed the
8080 it was assumed that the advan-
tage of "micro" technology was to
provide high powered computer
technology at an extremely low price.
This meant that a system designer
could afford to sprinkle micro-
processors liberally throughout the
system. Keyboards, floppy disk sub-
systems, printers, etc., were all to
have their own micro. Unfortunately,
once someone realized that the CPU
was spending a great deal of its time
in neutral waiting for the painfully
slow peripherals it was decided that
something must be done. Program-
mers set to work to develop a
multiuser environment. The end
result of their labors was a primitive
multiuser/multitasking environment
in which many exisiting applications
didn't work. Puzzled authors tried to
determine what applications they
wanted to write which would allow
numerous users of the same three
dollar microprocessor to each ex-
ecute several tasks contemporane-
ously.
Needless to say nothing much was
written and today with the emphasis
upon networking it seems unlikely
that it ever will. After all networking
was the obvious choice. Multitasking
is important for the typical user only
because it allows him to continue to
use his machine when it is printing
or engaged in file transfer via
telephone lines, or other low level
background tasks.
Another popular myth was that end
users would write the bulk of their
own applications software in BASIC.
While BASIC has proven to be a
powerful language in the micro en-

Lifelines/The Software Magazine, July 19832

Learning Not to Swear at Your DELETE KeyFeature

by Mark R. Gardner
(sigh, be patient, we're getting there). Dump from the
location specified by this jump, and voila! you've got it.
The seventh and eighth bytes in the dump give the ad-
dress of the base of the BDOS. Just subtract six. Easy,
right? Fig. 2 shows the process I've just described.

How to put the patch in
To continue, it's time to put the patch in. You can use the H
command to calculate the addresses, but you can prob-
ably do it in your head. The new program goes at the
BDOS base + ODFOH, and a jump to it replaces the 5 bytes
at the BDOS base + 0202H. Fig. 3 shows the calculations
of the two patch addresses, and continues with the use of
the A command to enter the new code and the overwrite
of the old code. Notice the oops! at my attempt to enter a
NOP instruction at 0D202H. I did NOT press control-C, I
pressed an 'N', the first letter of NOP. Unfortunately, the
previous entry of NOP had changed code in progress, and
the program ran through the NOP smack into the follow-
ing 08, which is an EX instruction on my Z80, undefined
on 8080's. Anyhow, it broke the program. It would be bet-
ter to continue as shown in Fig. 4, by writing a little pro-
gram somewhere to make all the changes at once. Com-
pleted, the patch works immediately.

Here's a better way
If you'd like something a little easier (after all, the patch
goes away when you do a cold boot, as at power-on), all
you have to do is enter and assemble the program I have
sent along with this little article (presented in Fig. 5). It
automatically determines the BDOS base, installs the
patch, and returns to CP/M. After boot, just run it once,
and everything is cool. It beats the DDT operation by a
mile (or at least, 75 seconds), and is less prone to failure.
You don't need to type in all the comments, but they might
be handy to you later. The code is commented fairly well,
so I won't say much here. I will point out that the code con-
tains the patches, with their contained jumps labelled.
This is so the PUTPAT portion of the program can calculate
the appropriate REAL jump addresses and stash them
within itself before moving the patch portions to the two
respective places in memory where they reside. This is
self-modifying code, generally considered dangerous, so
if you try it in your own work, be careful, or you too may
see control-C appear when you only type an 'N'.

Could patch the system tracks
I plan to install this patch in the image of CP/M on the
system tracks on my disk. There are various ways to do
this, from SYSGEN to various "zapper" programs. I plan
to use a bugger program that I am currently writing, but

(continued on next page)

NE FEATURE OF CP/M IS LEFT OVER FROM THE
primitive teletype days: the echo of characters

■ J "rubbed out" with the DELETE key. The already
printed character on the teletype roll couldn't be

effaced, so the clever designers made the DELETE (or
RUBOUT) key echo, and gave us control-R to replot the
line so we could see what we were doing. I'm not the
world's best typist, nor worst, but I make enough mis-
takes that I get frustrated at the clobbered lines that result
from using DELETE instead of BACKSPACE (this last is
control-H, and works the way CRT's deserve — the char-
acter being deleted is overwritten with a space, and the
cursor parked appropriately). On the keyboards I've
used, the DELETE key is often handier than the BACK-
SPACE key (DataMedia DT80/1, DEC VT100, Intel MDS,
my own Toshiba T100), and anyway, its silly to be stuck
with this atavistic feature that assumes my seven color
(plus black) display is on a roll of paper!

I've solved the problem. I found the BDOS instruction
that traps the BACKSPACE key, and made it trap the
DELETE key as well. (Fortunately, whatever code pre-
viously processed the DELETE key executes after my
patch, and hence is never executed.) My version of CP/M
is 2.2, and has no trouble working with my patch. I've also
installed it in an Intel MDS under CP/M, and it behaves
just as well (better, in my opinion, since the DELETE key
works correctly). I believe it will work in any version 2.2,
but I can't test every computer, alas, that runs it. I'll leave
that up to you.

Where the patch goes
My Toshiba T100 has a BDOS based at 0D000H. The com-
pare instruction for the backspace key is at 0D202H, and
there are some unused bytes at ODDFOH (the end of the
BDOS just before the start of the BIOS). The compare in-
struction and the conditional jump just following it are
changed to be just a jump to the patch area at ODDFOH.
The patch area is then filled with the original compare and
jump corresponding to the BACKSPACE key, and also a
compare and jump to correspond to the DELETE key. The
two sections of memory are shown in Fig. 1, before and
after the patch.

Naturally, not every BDOS is based at 0D000H, but at
locations depending on the amount of memory. If you
want to install the patch by hand, you can, but you'll have
to find where your BDOS starts, and DDT is a dandy tool
for doing this, and also for installing the patch. In DDT,
dump from 0 and note the contents of locations 6 and 7.
These are NOT the base of the BDOS, although they
WERE until DDT was loaded and changed them. How-
ever, all is not lost. Now dump from the location given by
those locations (remember that the least significant byte is
first). The first three bytes are now ANOTHER jump

Lifelines/The Software Magazine, Volume IV, Number 2

it's not quite ready. In any case, each of you will find a favorite way to get it onto your disk, if running the program at
each boot is not sufficient. In the meantime, if you discover how to make the BACKSPACE key work like the DELETE key,
I don't want to know.

BEFORE:
■ DD202.D20F
mem
D202
■ DDDFO
mem
DDFO

234567 89ABCDEFt0 t1
FE 08 C2 16 D2 78 B7 CA EF D1 05 3A 0C D3 32 0A x..... :..2.

01 23456789ABCDEF
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

AFTER:
■ DD02.D205
mem
D202
■DDDFO
mem
DDFO

23456789ABCDEFt0 t1
00 00 C3 F0DD 78 B7 CA EF D1 05 3A 0C D3 32 0A x..... :..2.

01 23456 7 89ABCDEF
FE 08 CA 07 D2 FE 7F C2 16 D2 C3 07 D2 00 00 00

FIG. 1. Toshiba T100 memory before and after DELPATCH, provides operation of DELETE key identical to BACKSPACE key, i.e., erase, not echo.

A>DDT
DDT VERS 2.2
—D0,F
0000
—DCOOO.COOf
cooo
—DC6A2.C6AF
C6A2

C3 03 DE 80 00 C3 00 CO 00 00 00 00 00 00 00 00
t t

C3 A2 C6 00 00 00 C3 4F C3 C3 24 C5 00 01 1E EB0..$.....
t t

E3 22 4ACF E3 C3 06DO 2A 06 00 22ABC6 . " j
t t

FIG. 2. Procedure in DDT to find base of BDOS for your computer. Numbers here are for my Toshiba T100. Note final result is 0D006H.

—HD006.6
DOOC D000
-HD000.202
D202 CDFE
—HD000.DF0
DDFO C210
—DD202.D20F
D202
-DDDFO,DDFF
DDFO
-ADDF0
DDFO
DDF2
DDF5
DDF7
DDFA
DDFD
-AD202
D202
D203

FE 08 C2 16 D2 78 B7 CA EF D1 05 3A 0C D3 x.....

00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

CPI 8
JZ D207

CPI 7F
JNZ D216
JMP D207

NOP
tc

FIG. 3. Continuing with hand entry of patch. Note calculations with H command, and dumps to verify contents before proceeding. Also note the oops! at
0D203H.

-A2000
2000
2003
2006
2008
200E
2011
2012

LXI H,0
SHLD D202

MVI A,C3
STA D204

SHLD D205
RST 7

4 Lifelines/The Software Magazine, July 1983

-G2000
*2011
- tc
A>

FIG. 4. The better way to change location 0D203H. Short program entered at 2000H allows all 5 bytes to be changed (safely) at the same time. The RST
7 instruction returns control to DDT after the change, and the patch will work.

; DELPATCH.ASM 4/4/83 MARK R. GARDNER
; Copyright 1983 MRGENT Consulting

; Program to patch the BDOS so that the DELETE key functions (at the CP/M command line) like the BACKSPACE key, i.e., it backspaces and overwrites

; with a space, rather than echoing the deleted character.

; Program in 8080/8085 assembly code. Assemble with ASM, convert to .COM file with LOAD, run with DELPATCH. Program requires no arguments on

; control line, and will return to CP/M when finished. If it finds that the first instruction at PT1LOC is not a CPI 08, it assumes the installed CP/M is not

; patchable, and aborts. Note that this program will not work properly under DDT, since DDT changes the contents of locations 6 and 7 that this
; program uses to find where the patch belongs.

ORG
JMP

100H
PUTPAT

BDOSST EQU 6 ; LOCATION OF ADDRESS OF BDOS (PART OF THE JUMP BDOS AT LOCATION 5)

; The following locations have 6 subtracted to offset the fact that the BDOS jump at location 5 is to BDOS base + 6.

PT1LOC
PT2LOC
JPBAK1
JPBAK2

EQU
EQU
EQU
EQU

202H-6
0DF0H-6
PT1LOC + 5
216H-6

; INSERT LOCATION PATCH 1
; INSERT LOCATION PATCH 2
; REENTRY FROM PATCH 2
; REENTRY FROM PATCH 2

PATCH1:

PT1JMP:

NOP
NOP

JMP

; PATCH 1, REPLACES BDOS FROM PT1LOC TO PT1LOC + 4 (5 BYTES)

PT2LOC ; THIS JUMP LOCATION IS A DUMMY-IT IS REPLACED (SEE AT PUTPAT, BELOW) BEFORE THE
; PATCH IS MOVED TO THE BDOS. (THIS IS TRUE FOR THE THREE JUMPS IN PATCH2 AS WELL.)

PATCH2:

JZBK1:

JNZBK2:

JMPBK1:

CPI

JZ
CP/

JNZ

JMP

; PATCH2, NEW CODE IN BDOS AT PT2LOC
8 ; SEE IF IS BACKSPACE

JPBAK1 ; IF SO, DON’T GOTO JPBAK2
7FH ; SEE IF IS DELETE KEY

JPBAK2 ; IF SO, DON'T GOTO JPBAK2

JPBAK1 ; (SEE NOTE ABOUT JUMPS IN PATCH1.)

PUTPAT:
LHLD
LXI
DAD
SHLD

; PUTTHE PATCH IN MEMORY
BDOSST ; CALCULATE THE REAL JUMPS FOR THE PATCHES
D.PT2LOC
D ; HL NOW CONTAINS REAL PT2LOC
PT1JMP + 1 ; SOFIXPATCH1

LHLD
LXI
DAD
SHLD
SHLD
LHLD
LXI
DAD
SHLD

BDOSST
D.JPBAK1
D
JZBK1 + 1
JMPBK1 +1
BDOSST
D.JPBAK2
D
JNZBK2 4-1

; COMMENTS ETC. AS JUST ABOVE

CHKBD$:
LHLD
LXI
DAD

; CHECK THE BDOS FOR CPI 8
BDOSST ; CALCULATE THE LOCATION TO INSTALL PATCH
D.PT1LOC
D ; HL POINTSTO PATCH AREA

MOV A,M ; SEE IF IS CORRECT INSTRUCTION
CPI 0FEH
JNZ BADBDS ; IF NOT, REFUSE TO PATCH IT
INX H
MOV A,M
CPI 8
JN2 BADBDS
DCX H (continued on next page)

Lifelines/The Software Magazine, Volume IV, Number 2 5

; HL STILL POINTS TO PATCH AREA
LXI
MVI
CALL

D.PATCH1
B.PATCH2-PATCH1
MOVEIT

; DE POINTS TO THE PATCH
; SETTHE PATCH LENGTH
; AND PUT IT IN PLACE

LHLD BDOSST
LXI D.PT2LOC
DAD D ; CALCULATE LOCATION TO INSTALL PATCH2
LXI D.PATCH2 ; POINT TO THE PATCH
MVI B.PUTPAT-PATCH2 ; SETTHE PATCH LENGTH
CALL MOVEIT ; AND PUT IT IN PLACE
JMP LEVPAT

BDBSMG: ; BAD BDOS MESSAGE
DB 13,10,THIS PATCH DOES NOT FIT YOUR BDOS.’,13,10
DB ‘(SEE THE SOURCE PROGRAM FOR NOTES)’,13,10,’$’

BADBDS: ; BAD BDOS
LXI D,BDBSMG
MVI C,9 ; BDOS PRINT STRING
CALL 5 ; TO TELL USER PATCH NOT DONE

LEVPAT: ; LEAVE THE PATCH PROGRAM
MVI C,0
CALL 5 ; RETURN TO CPM WITH INSTALLED PATCH

MOVEIT: ; PERFORM THE SPECIFIED MOVE
LDAX D
MOV M.A ; PICK AND PLOP
DCR B
RZ
INX D
INX H
JMP MOVEIT ; CONTINUE UNTIL ALL MOVED
END ; THAT’S ALL

A Call for
Manuscripts
Perhaps you've done some writ-
ing before. Or maybe you've al-
ways wanted to write. It could be
that reading Lifelines/The Software
Magazine has given you some
ideas on what you have to con-
tribute. We're interested in hear-
ing what you have learned, and so
are other readers. Whatever
serious CP/M-80 compatible soft-
ware you've been using, we'd like
you to write for us. We like to
publish both long essays and
those short gems which can hold
so much important information.

Send us a brief resume of your
software experience, and samples
of your previous writing, if you
have any. (Don't be shy if you're
not an experienced writer.) Then
we can talk about your work and
about payment for your efforts.
Write or call: Editorial Dept.,
Lifelines Publishing Corp., 1651
Third Ave., New York, N.Y. 10028.
Telephone: (212) 722-1700.

FIG. 5. DELPATCH.ASM, an assembly program to perform the patch (if appropriate) and return control to CP/M. This is recommended, unless you can
easily patch the system tracks on your disk, to permanently preserve the patch at each boot, n

STOK SOFTWARE, INC.
Humanizing the Computer

Back Rest
NO PROBLEM WE’VI
USING BACKREST

JUST RESTORE IT

iTM'PROF EASY A

WE LOST THE
MASTER FILE'

FLOPPY DISKS AND ALLOWS
.SIMPLE RESTORATION LATER /

Hard Disk
Backup,
Restore

i and more!

Put your knowledge of your office environment into your computer so
that your personnel will be properly guided in your absence.

STOK PILOT is a control language that allows easy development of a
menu driven environment as well as an on line instructional utility for any
CP/M or MP/M application. It can guide the user through an entire
process without requiring the user to enter cumbersome system com-
mands, hence making the system transparent to the user.

STOK PILOT can chain to any "COM” file program, or series of
“COM” files, and regain control when the last program ends. This, and
other unique features make it easy to design complete turnkey systems.

Disk and manual - $129.95. Manual alone - $14.95. • Incremental and Full backup.
• True copying of random files.
• Split large files if necessary.
• Migrate or delete selected files. $99.95
• Automatically restore bad files.
• Print Management reports.
• Requires CP/M 2.2, CP/M 3 or MP/M.

VISA MasterCard THE
RANDOM in
HOUSE

SuperDO & SuperSUB - $29.00
SuperDO allows the CP/M operator to type a string of commands that will

execute one at a time. So you can walk away for a while and let your
computer do its thing. Example:

A > DO ASM PROG 1; LOAD PROG 1; ASM PROG2; LOAD PROG2;DIR
SuperSUB is an enhanced SUBMIT command that will run on any stan-

dard CP/M 2.2 system. It runs faster than SUBMIT because it buffers the
commands in memory.
Random House and the House design are TM of Random House, Inc. CP/M - MP/M are
TM of Digital Research, Inc Dealer inquiries invited.

ELECTRONIC
THESAURUS®

Stok Software Inc.

17 West 17th St.
• New York, NY

10011
212 / 243-1444 $140.00

Lifelines/The Software Magazine, July 19836

Feoture' SpellStar Revisited

by Robert P. VonNotta
vinced me that the dictionarymainte-
nance routines have a potentially
serious limitation. You are freely per-
mitted to add words to the dictionary
at your whim. Unfortunately, you are
not told anywhere of either the limit
of additional words permitted or the
penalty for exceeding the limit. I
have discovered that you can reliably
tell when the dictionary will not ac-
cept additional words by merely
watching the "tube" during the dic-
tionary update. When SpellStar
mumbles about an internal error and
executes a warm boot, you know that
the dictionary is full. Never mind
that it also destroyed your master dic-
tionary file at the same time! It was
too full anyway, and you, of course,
have a backup copy for future use.

A final irritation that has come to
my attention is that all words that are
designated for addition to the dic-
tionary are stored in a temporary file
called the ADD file. This is fair
enough, except that each time you
enter the edit mode the file is de-
stroyed and recreated. This means
that if you work through a long file
and periodically execute a tKS, to
save and reedit, you will find that
upon completion your ADD file will
only contain the words flagged for
the dictionary since the last SAVE.

In summary, I still find SpellStar
pleasant and easy to use. Version 1.2
gets to the point where it crashes
much more quickly than did version
1.0, and unlike the fatal crashes of the
earlier version the check-time crash
is recoverable. This has got to be a
great improvement. I now avoid the
main dictionary explosions by put-
ting my extra words in a supplemen-
tal dictionary. Believe it or not, I con-
tinue to use this "gobbler" in prefer-
ence to several other dictionary pro-
grams that are gathering dust within
my grasp. My reason for this is that I
like the program design. I merely
wish that it worked. It may be that by
the time you see this in print Micro-
Pro will have a still later version on
the market. I surely hope so, but
since I am merely a paying customer

ly, I all too well understand the con-
straints of a 64k memory board, and
must recognize that an "on line"
spelling checking routine is not feasi-
ble in the 8080-Z80 environment.

Among the gripes that I have with
SpellStar version 1.2 is that it crashes
during the correction routine when
you are checking large files. SpellStar
contains a small buffer which is sup-
posed to hold the last few words that
you have ignored during the correc-
tion routine. The idea is that if you
come upon a correctly spelled word
that is not in the dictionary, after you
bypass it the first time, the word will
be remembered and automatically
bypassed in the future. This buffer
holds 10 to 20 words and is supposed
to dump itself out the back end if
more words are accumulated than
will fit.

Unfortunately, on my Model 16,
under both Pickles and Trout CP/M
and Lifeboat CP/M, SpellStar
crashes on the 15th word during the
correction routine. The error mes-
sage is an "Internal Error 118 (mem-
ory Shortage)." The only good thing
about it is that the crash landing is
soft. The error is trapped and a push
of the escape key will land you in
WordStar in the edit mode. SpellStar
can then be restarted with tL, and
the correction routine can be com-
pleted without any further prob-
lems. The other problems include
the failure of SpellStar to recognize
the clear screen command of Pickles
and Trout CP/M. This does not in-
terfere with the usefulness of the
program but does render it a cos-
metic disaster area with that installa-
tion. In a similar vein, the SOROC
120 installation routine that is used
by the ATON variant of CP/M for the
TRS80 Model 11/16 did not correctly
identify the inverse video codes.
SpellStar displays correctly without
highlighting, but it is a shock to see it
in that mode, after being dazzled by
the extensive highlighting that ap-
pears under the Pickles and Trout
and Lifeboat variants of CP/M.

Several months of use have con-

N THE APRIL, 1982 ISSUE OF
Lifelines, I reviewed SpellStar
version 1.0 from MicroPro.
This is, of course, the diction-
ary overlay for WordStar. In

that article I observed that I liked the
program just fine except that it
1) worked too slowly, 2) crashed fre-
quently, 3) and would not work with
my Radio Shack video board (mean-
ing that it was unusable with Pickles
and Trout CP/M and only marginally
useful under Lifeboat CP/M).

A more recent issue of Lifelines
(September 1982) carried a response
from MicroPro claiming that the
problems had been cured with a new
version of SpellStar (version 1.2).

Only because of that response did I
learn that a new version had been re-
leased. The update is a "no charge"
update, but if you don't know to ask
for it you won't get it. (I can't help but
contrast this with the Digital Re-
search policy of mailing postpaid up-
dates to registered users who buy
early non-working versions of their
products.)

Anyhow, I have now tested Spell-
Star version 1.2 (and also an even
later version called 1.21). It is much
revised. Physically the size of SPELL-
STAR.OVR has been reduced from
30k to 18k. The unexplained depar-
tures to the operating system no
longer occur while checking large
files. The speed is now competitive.
For example, on a small file of 66
words SpellStar version 1.0 required
a full minute; while a competitive
spelling program, Spellguard, re-
quired 27 seconds. Version 1.2 re-
quires 14 seconds.

On a moderate file of 422 words
Version 1.2 and Spellguard were of
equal speed. On a very large file,
12,000 words, Spellguard is still
faster (1:12 minutes compared to 2:12
minutes for the checking routines),
but SpellStar is in the ballpark.

I will not be completely happy with
any dictionary routine until it works
with the speed and convenience
comparable to that of the paragraph
reform key (Control B). Unfortunate-

(continued on next page)
7Lifelines/The Software Magazine, Volume IV, Number 2

The convenience of this is that you
can make a quick pass through the
corrected file using the WordStar
tQL command and do any
housekeeping or reformng that may
be indicated.

Conclusions
This writer keeps his head in the
sand most of the time, so I have prob-
ably missed something, but if there is
something that SpellStar does better
(besides crash) than THE WORD
PLUS, I simply haven't found it. One
possible issue, however, would be
disk space. With a disk change Spell-
Star will run on a system with at least
two 108k floppies. The dictionary for
THE WORD PLUS consumes 138k so
don't expect those single density
5%-inch floppies to handle THE
WORD PLUS. It is possible that
someone who has less than the 2.5
megabytes of floppy disk storage,
characteristic of my TRS80 Model 16,
might be more concerned about this
requirement but from my viewpoint
THE WORD PLUS is well worth the
extra space, f l

of MicroPro and a registered user of
SpellStar, don't expect me to know
about it.

After I wrote most of this article
and before I sent it for publication I
made one last check to see if version
1.2 was the current version. I found
out it wasn't. Somewhere in the last
six months version 1.21 had ap-
peared. My dealer claimed that it
fixed numerous bugs that were pres-
ent in version 1.2. Anyhow, I got ver-
sion 1.21 which was another "no
charge" update. Amid high expecta-
tions I checked for the same bugs that
plagued version 1.2. Of the three
bugs described in this article it is one
for three. The screen display now
works properly under ATON CP/M
for the Radio Shack 11/12/16. It still
doesn't work right for Pickles and
Trout CP/M. Also, SpellStar still
crashes on large files with an internal
error.

By the time you read this there will
be still another version of SpellStar
out, as a new version of WordStar has
been announced for June 1983. This
version of WordStar will require dif-
ferent overlays for both MailMerge

and SpellStar. For my own two cents
worth, my frustration level with
SpellStar has reached the point that I
don't much care whether they ever
get a version that works or not be-
cause I am going to be using some-
thing else.

A hot prospect for a substitute for
SpellStar is THE WORD PLUS by
Oasis. It is a stand-alone system that
will work with almost any word pro-
cessing program. It is competitively
priced, faster than SpellStar, and has
the ability to suggest corrections for
suspect words. THE WORD PLUS
can be configured so that it uses a t@
(OOh) for an error flag. If this is done
you can actually use the convenient
SpellStar correction routines (trig-
gered by a tQL) that are built into
WordStar even though you don't
own SpellStar.

Actually the correction routines
provided by THE WORD PLUS are
even more convenient than those of
SpellStar, but it is useful to use both,
as THE WORD PLUS will leave a flag
where spelling corrections change
word length or by any word that you
choose to flag rather than correct.

Tips and Techniques

In the February Z80 tutorial, Kim DeWindt expresses
interest in the possible uses of the RLD and RRD
instructions. These operations are paricularly useful for
BCD arithmetic. In fact, a single RLD or RRD instruction
can often replace several lines of 8080 code.

For example, suppose a packed BCD number (2 digits
per byte) is located in memory at addresses PACKNUM
thru PACKNUM + PACKLEN - 1. Then, the following
code shifts the entire number right by one nibble and
inserts zero in the high order nibblez.

LD HL,PACKNUM ;
LD DE,ASCNUM
LD B,PACKLEN
LD A,30H ; High nibble for ASCII format

UNPACK RLD ; High nibble of (HL) TO Accum
LD (DE),A ; Store ASCII byte.
INC DE ; Point next to ASCII location.
RLD ; Low nibble of (HL) to Accum
LD (DE),A ; Store ASCII byte.
INC DE ; Point next ASCII location.
RLD ; Restore original packed byte
INC HL ; Point next packed byte.
DJNZ UNPACK

XOR A ; Clear accumulator.
LD HL,PACKNUM
LD B,PACKLEN

BCRIGHT RRD ; Nibble from prior byte to (HL).
; Low nibble of (hl) to A.

INC HL ; Point to next byte.
DJNZ NCRIGHT

The Z80 instruction set contains several features which
enhance its ability to do BCD arithmetic. Would Lifelines
be interested in an article on this subject which would
include implementations of all the standard operations?

Sincerely,
Robert Pirko

This routine could be used to align operands for BCD
floating point arithmetic and is much faster than code
using single bit shifts.

As another example, we might need to print a BCD
number. First we must change it to ASCII format. The
following code performs the required conversion for
PACKNUM and stores the result at ASCNUM:

Lifelines/The Software Magazine, July 1983

“More documentation?
Go to a book store ”

“Training? Call a
computer school.”

Lai “Technical support?
Call the publisher”

Interested in dBASE IT or 1-2-3 ?
Beware The Dreaded Finger Pointers!

Free dBASE IF User’s Guide
Order dBASE II™ from us, and
you’ll receive a free copy of
our dBASE II™ User’s Guide.
You can also buy the User’s
Guide first for only $29, and
then receive a full credit when
you buy dBASE 11.™
French Translation
La Commande Electronique
5 Villa Des Entrepreneurs
75015 Paris, France
Japanese Translation
JSEInt ’ l
9F Toyo Bldg. 6-12-20 Jingmae
Shibuya-ku Tokyo, Japan 150

1-2-3 & dBASE IF Classes
Want more in-depth informa-
tion about dBASE II™ or 1-2-3™?
Attend a SoftwareBanc Semi-
nar near you. Each session runs
from 9 to 5, and costs $175.
Seminars are in lecture
format with a custom sound &
video system which is used to
display taped interviews with
prominent software personal-
ities and sessions with various
software programs.

Prices You Can Afford
11-2-3™ .. $399
tdBASE i r $479
fABSTAT™ $379
dBASE II’" User’s Guide $29
DBPIus™ .. $95
dGRAPH™ $199
dUTIL™ .. $69
dNAMES™ $109
QUICKCODE™ $199
TEXTRA™ $60*

Sound familiar? Does your
dealer turn into a "finger
pointer” when you need help?

At SoftwareBanc we offer a
complete system that doesn’t
stop when your software is
delivered.

Careful Product Selection
Do you get bewildered by
the endless lists of soft-
ware you find in most ads?
Let us be your quality control
department.

We only sell the best pro-
grams on the market. After a
thorough evaluation we chose
dBASE II™ for data process-
ing, and 1-2-3™ for financial
management.

Our complete line of add-on
products help you to continue
to get the most from your
software.

Expert Technical Support
When you buy software from
us, you can rest assured that
help is only a phone call
away. Just call us at (617)
641-1235 for all the free
support you need.

t No-risk 60 day money back guarantee
*Only available for IBM PC with MS-DOS.

Free Catalog
If you want to learn more about
SoftwareBanc, call or write for our
free product catalog.

SoftwareBanc
661 Massachusetts Avenue
Arlington, Mass. 02174
For technical support call:
(617)641-1235
Dealer Inquir ies Invited.
™Manufacturer’s trademark
Payment may be made by: MasterCard, Visa, check,
C.O.D., money order. Mass, residents please add
5% sales tax. Add $5.00 for shipping and handling.
Prices subject to change.

SoftwareBanc
Order Toll Free

1-800-451-2502
(617) 641-1241 in Mass.

I

/SoftwareBanc
661 Massachusetts Avenue

Arlington, MA 02174

Anchorage
August 11-12
New York City
September 19-23

Los Angeles
July 18-22
Washington, D.C.
Aug. 29-Sept. 2

9Lifelines/The Software Magazine, Volume IV, Number 2

feature MatheMagic and The Art of
Formula Evaluation

by Davis A. Foulger
Lest the reader get the wrong idea, it
should be noted that the developers
of MatheMagic are hardly alone in
trying to develop the 1980s micro-
computer equivalent of FORTRAN.
Indeed, center stage in this develop-
ment effort belongs, and will likely
remain for a while, in the hands of
spreadsheet programs like VisiCalc,
T/MAKER, SuperCalc and CalcStar,
to name a few. Ultimately, any review
of MatheMagic will have to be com-
pared with both those spreadsheets
and the programming languages,
like FORTRAN and BASIC, that
MatheMagic attempts to simplify.

MatheMagic versus
BASIC

None of these answers is particu-
larly new. Menus have become a
staple ingredient of user friendly
software, and finding menuless soft-
ware that people can learn within 30
minutes to an hour is close to im-
possible. Restricted options are
nothing new either; menus almost
inevitably reduce a user's options.
Critics of software have, moreover,
increasingly favored languages that
allow a modular approach to pro-
gramming. Whether championed as
structured programming (Pascal) or
ob ject-oriented programming
(SMALL-TALK and LOGO), modu-
larity is generally seen as the one
feature whose inclusion in BASIC
would be most beneficial over the
long term.

Formula entry
From a practical standpoint,
MatheMagic might be described as
BASIC reduced to a series of LET
statements. Formulas are entered in
almost exactly the same way they are
typically entered into the BASIC pro-
gram. Indeed, a simple formula can
probably be evaluated in the
Microsoft BASIC Interpreter on the
IBM Personal Computer (the
machine I'm testing Mathemagic on)
with about the same number of
keystrokes that would be needed in
MatheMagic.

A typical LET statement of the
form "LET A = B + C" would typically
be entered into the IBM-PC's
Microsoft BASIC Interpreter in one
of two ways. First, it might be
evaluated directly, with the user
writing "B = 1: C = 2: PRINT B + C" or
"PRINT 1+2." Second, it might be
incorporated into a larger program,
in which case the values of B and C
would probably be determined
before the statement, the print opera-
tion would probably be taken care of
in a later statement, and the actual
formula would be entered looking
something like this: "235 A = B + C."

The short unnumbered programs
are evaluated in the IBM-PC Micro-

— _ HAT WOULD YOU DO IF
' / f J you wanted to make
/ yf / BASIC really easy to

use? There are a lot of
answers to that question ranging
from "BASIC is already really easy to
use" to "Learn LOGO." In truth, the
answer you give to that question will
depend on the amount of experience
you have with BASIC, the other pro-
gramming languages you know well,
and the kinds of applications you are
interested in.

What is clear, regardless of how
easy you think BASIC is, and BASIC
is pretty easy, are the following:

1) BASIC takes a while to learn. No
matter what the intentions of the lan-
guage designers, BASIC does not
really emulate the way people talk or
think.

2) BASIC is cluttered with its past.
Some statements (PRINT, for in-
stance) are anachronistic and un-
necessary in many applications.

3) BASIC rarely results in clear
code, especially in longer programs.
Even highly experienced BASIC pro-
grammers often have trouble figur-
ing out how a BASIC program works.

MatheMagic is an applications pro-
gram for mathematicians and others
who work with complex mathemati-
cal formulas. Its developers describe
it as an "ultimate calculator," but that
description really does violence, at
least in an age of desktop computing,
to both MatheMagic and calculators.
It is not as simple or portable as a
calculator. It is, on the other hand,
much easier to use than any calcula-
tor, especially when complex formu-
las are being evaluated.

MatheMagic is probably better
described as a "formula translator," a
description that should immediately
bring at least one programming lan-
guage, FORTRAN, to mind. The
comparison is apt, as MatheMagic is
really attempting to do, in the 1980s,
what FORTRAN attempted to do in
the 1950s and BASIC attempted to do
in the 1960s—e.g., to make it easy for
people to (1) put formulas and data into a
computer and (2) get answers back out.

We started this review by asking
what might be done to make BASIC
really easy to use. This was obviously
an important question to the people
at International Software Marketing
(ISM) who turned MatheMagic into a
program. Their answers are con-
strained, to a large extent, by the lim-
itations of the application they were
creating. If those answers refuse to
break new ground in the history of
programming languages, they do, by
and large, succeed.

Their most important answers are
the following:

1) Make formula and data entry as
simple as possible. Where the user
must enter code directly—the entry
of formulas and data— allow entry in
a form that requires minimal train-
ing, that the user will be able to readi-
ly recognize and change. Where
direct coding is unnecessary, use
menus.

2) Restrict the user's options to
really needed choices. A lot of BASIC
language options are unnecessary in
many applications.

3) Keep user coding as clean as
possible by treating formulas as ob-
jects and permitting modular pro-
gramming in which the result of one
formula can be incorporated, with-
out regard to placement, within
another.

10 Lifelines/The Software Magazine, July 1983

Object-oriented
programming

However similar the form of
MatheMagic formulas may be to the
form of BASIC language formulas,
there are differences which, in
general, enhance the flexibility and
ease of use of MatheMagic. The most
trivial of these differences is the
character used to separate different
calculations from one another. To put
more than one formula on a single
line in BASIC, a colon is used
(A=A + B: D=A/100). MatheMagic
prefers a semicolon (A=A+B;
D=A/100).

A more important difference is
found in MatheMagic's use of the
question mark. The appearance of a
question mark at the end of a variable
name within a MatheMagic formula
specifies that variable as an "ask"
variable. This specification tells the
program to disregard any values it
may have stored for that variable
name and prompt the user to enter a
new value. This is a particularly con-
venient feature, especially when a
task demands the recalculation of a
formula several times with changes
in only one or two values.

In BASIC, the full effect of this
question mark would require several
lines of code, including INPUT,
STOP and GOTO commands (the
GOTO might be accommodated by a
WHILE. . .WEND or IF. . .THEN. . .
ELSE loop). Thus MatheMagic's
question mark is clearly a rather
powerful feature.

The question mark is almost in-
significant in importance, however,
when compared with Mathemagic's
stored formula feature. Without the
stored formula feature, MatheMagic
would be nothing more than a rather
interesting applications program.
With it, MatheMagic becomes a user-
friendly programming language
which a person learns without ever
knowing that he or she is actually
programming.

MatheMagic allows the user to
save formulas and variable sets for
later use. This is an important
feature, if only because its gives
MatheMagic the ability to perform
calculating tasks that would be dif-
ficult or impossible on all but the
most powerful Hewlett-Packard and
Texas Instruments Magnetic Card

(continued on next page)

Program control
When you load MatheMagic up on
your computer, you are confronted
with three windows which are label-
ed, from top to bottom, the "COM-
MAND AREA," the "DISPLAY
AREA," and the "ENTRY AREA."
These screens and their implied divi-
sion are a constant in MatheMagic.
No matter what you do in the pro-
gram, menus and messages will be
displayed in the upper window, for-
mulas, variables and answers will be
displayed in the middle window, and
formulas and variables will be en-
tered and edited in the lower
window.

The entry and use of formulas and
variables are controlled in Mathe-
Magic entirely through a fairly exten-
sive menu-structure which guides
the user through a limited array of
choices. A Main menu allows the
user to move into "Formulas" entry,
calculation and editing, "Variables"
entry and editing, and to perform
"Printing," get "Help," or "Set"
parameters for the system. Each of
these choices, in turn, permits a
similarly limited range of choices,
ultimately allowing the user to
choose between roughly twenty dif-
ferent actions.

This limited range of options
seems more than adequate, however,
for most applications. Indeed, it is
quite flexible. Calculations can be
performed in three different ways,
with stepwise and repeating options
added to the normal simple calcula-
tion command. Stepwise calculation
allows the user to evaluate the for-
mula one step at a time, an option
which can be useful if you want to
look at intermediate steps. Repeated
calculations invoke the MatheMagic
equivalent of a FOR . . . NEXT loop,
with the proviso that MatheMagic
saves the result at each loop as an
array.

Few users are likely to have much
use for that array within Mathe-
Magic, but the ability to compute and
save the array allows the user to use it
in other programs, including ISM's
forthcoming GraphMagic. Arrays
are not, however, a strength of
MatheMagic, as will be seen when
MatheMagic is compared to Spread-
sheet programs a little later in this
article.

soft BASIC with a single stroke of the
enter (return) key. The longer pro-
gram is evaluated by writing RUN
and then stroking the enter key. Hav-
ing this range of options is one of the
nice things about working in Micro-
soft BASIC. But those options do
make BASIC harder to learn and use
than it might be.

The form of a MatheMagic formula
is identical to the form of the BASIC
language LET statement in almost
every respect, but the manner in
which that formula is entered and
evaluated is quite different. One
must first move into FORMULA
mode by typing "F." One must then
implement the CREATE/CLEAR op-
tion by typing "C." Both of these
keystrokes are suggested by menus
and are rather easy to figure out
without reading the MatheMagic
documentation. Then you can write
out your formula.

There are very few differences be-
tween the MatheMagic formula and
the BASIC language LET statement.
Indeed, we can, at this stage, enter:

"A=B + C."
The formula is perfectly valid in
MatheMagic. Also perfectly valid is
the formula:

"GROSSINCOME = COSTS +
NETINCOME"

a statement that can be made in the
IBM-PC Microsoft BASIC, but which
is not possible in many BASIC imple-
mentations.

MatheMagic really isn't that picky,
however. It will also calculate "B + C"
or "COSTS + NETINCOME" with-
out any problems. You get the same
answer with or without the "A = ." A
stroke of the return key enters the
formula into MatheMagic. A stroke
of the key evaluates the formula.

If values for B and C (COSTS and
NETINCOME) have already been
entered into MatheMagic, the for-
mula will be evaluated as using those
values. If values have not been
entered, MatheMagic will ask for
them. Clearly, the procedure involv-
ed in calculating a formula in Mathe-
magic is very simple. The process is
largely menu-driven. The form of
formula entry is reasonably intuitive.
The program asks for things when it
doesn't have them. Formulas are
rather easy to read, change, and
understand, especially when full
words are used.

Lifelines/The Software Magazine, Volume IV, Number 2

The Formula As Program
This feature makes it convenient to
think of formulas as modular pro-
grams in which one program has the
capability of calling another program
to help out. This kind of modularity
is, of course, the very essence of
object-oriented programming lan-
guages like SMALLTALK and
LOGO, and users might find Mathe-
Magic a valuable addition to their in-
ventory if only to experience what it
is like to write object-oriented
programs.

Returning to our example, BASIC's
"D = A/100" becomes "@A/100" in
MatheMagic. This formula can also
be saved (perhaps under the name
"@D,") and used in still other for-
mulas. It is possible to build rather
deep stacks of formulas using this
feature, which is both a convenience
and a danger. The convenience
comes in the ease with which highly
complex programs can be written
once the underlying objects are built;
in the ease with which an entire com-
plex of formulas can be changed and
debugged. The danger comes in the
areas of memory size (deep stacks of
formulas may threaten the memory
space of a microcomputer) and recur-
sion. Recursion is perhaps the larger
danger, as it is possible to write and
save a formula that calls itself.

The most exciting features of
Mathemagic are stored formulas
from the standpoint of ease of use
and software development. The
object-oriented nature of
MatheMagic makes it very easy to
master and maintain. That is, of
course, the most important impact of
the decision to make MatheMagic
object-oriented. Ease of use should
help MatheMagic to market success.

But the object-oriented features are
also something of a breakthrough for
the BASIC language itself. Mathe-
Magic is written in BASIC, and if the
principles that allowed MatheMagic
to achieve modularity could be
somehow extended to BASIC, BASIC
would become a much more satisfy-
ing language to use.

Room for improvement
Clearly, MatheMagic has some nice
features, but there is room for im-
provement in several areas. The first
is the display, which operates on my
IBM-PC in a 40-column mode that I
find rather bothersome and un-

Programmable Calculators. It allows
those tasks to be performed, more-
ever, more easily, and at much
greater speed, than would be possi-
ble even on such powerhouses as the
Texas Instruments SR-52/TI-59 cal-
culators or the Hewlett-Packard HP-
67/HP-41 calculators.

Formulas, once saved, can be re-
called at will, enabling the user to
return to frequently used but com-
plex formulas rather quickly. Recall
of formulas has been set up so flex-
ibly, however, that one formula can
actually be recalled, and evaluated,
by another formula. This recall is in-
itiated when MatheMagic sees an
ampersand (&) at the beginning of a
"variable name" in a formula. The
ampersand tells MatheMagic to go
find the formula with the name
following the ampersand, evaluate
it, and use the answer obtained as
the value required at this point in the
formula.

Here we find the kernel of an
object-oriented programming lan-
guage where formulas become ob-
jects to be manipulated as one might
manipulate index cards on a desk. As
long as the object exists, it can be us-
ed, and used anywhere, in any rela-
tion to other objects, as the user
prefers. Now I don't want to say that
you can't do this in BASIC. The truth
is that MatheMagic is written in
BASIC, but BASIC does not allow a
user the ease and flexibility assumed
in MatheMagic.

Let us take as an example the for-
mula pair "A = B + C; D = A/100" that
was used earlier. BASIC requires me
to include both of these formulas in
any new program that needs them. It
also requires that they appear in a
particular order in the program, with
the LET, INPUT, or READ statements
that establish the values of the A and
B formula appearing before the for-
mula that determines D.

Such restrictions don't apply in
MatheMagic. Saving the formula
A = B + C creates an object that can be
called by any other formula in
MatheMagic, so long as the disc that
holds that formula is in the machine
when the formula is called. If I save it
under variable name @A (which is
certainly descriptive), I need only
use @A in a formula for it to be call-
ed. I am not, moreover, restricted in
making such calls. I can call the same
formula several times in the same
formula and in several different
formulas.

necessary. Eighty columns would
make it easier to enter long formulas
and would be somewhat more eye
pleasing on a display that almost
never runs in anything but 80-
column mode.

The program could also be some-
what smoother in its calculations.
The user sees entirely too much of
MatheMagic's operations when the
program is evaluating a formula.
Such displays are, of course, nice
when operations are stepwise, but
only slow down the program under
most circumstances. Smoothness is
particularly lacking when "ask" vari-
ables are buried inside stored for-
mulas that get called by other for-
mulas. It takes some practice to get to
a final answer here.

It would also be nice if the program
had provisions for using a wider
variety of names for formulas and
variables, particularly in the im-
plementation on the IBM-PC. The
IBM-PC contains a complete Greek
alphabet in its "upper" 128 charac-
ters. Many established statistical and
engineering formulas are these char-
acters. It would be nice to be able to
use them directly inside Mathe-
Magic. Support of lower case letters,
moreover, would make multiword
variable names more readable.

These are not, however, deficien-
cies in MatheMagic so much as they
are deficiencies in the IBM-PC's
Microsoft BASIC Interpreter. Once
the program is compiled, ISM will be
free to make other changes to the
program, perhaps including the ad-
dition of some character options for
naming. That compilation will also
speed the program up considerably.

Beyond these deficiencies, how-
ever, objections to MatheMagic are
largely a matter of taste. The program
is written to serve a particular set of
needs. It serves them rather well. If
you have that need, MatheMagic will
be a valuable addition to your soft-
ware library. If you don't have the
need, then no amount of complain-
ing will suit the program to your
needs.

This brings me to my last com-
plaint, which is a matter of taste.
Merchandising MatheMagic as the
ultimate calculator seems to be
something of a mistake. Every time I
describe MatheMagic to a microcom-
puter user as software that turns a
microcomputer into a calculator, I get
laughter. "Why," I am asked, "would
anybody spend $5,000 on a computer

12 Lifelines/The Software Magazine, July 1983

valuable. If you need to work with ar-
rays of numbers, a spreadsheet is in-
valuable. If you need to work with
clusters of complex formulas, Mathe-
Magic is invaluable. If you need all
three, you should own all three. Each
does its respective job far better than
any of the others. I put myself in this
last group. I have found MatheMagic
a valuable component of my software
library. H
New Versions

spreadsheet program. To write a
complex formula on a spreadsheet,
one must think in terms of cells
rather than the variable name of
which the formula is actually com-
posed. Variable names must be
thought of in terms of cells; trans-
lated into cell names. The potential
for error increases as a result.

As with BASIC, moreover, place-
ment is important in spreadsheets. If
one calculation depends on another,
the misplacement of the antecedent
formula on the spreadsheet will
result in erroneous results that can
only be sorted out, if it can be sorted
out at all, by the recalculation of the
entire spreadsheet.

Complex formulas and recursion
are, on the other hand, old stuff for
MatheMagic, which takes the lan-
guage of formulas as its metaphor.
Cells are the object in a spreadsheet,
with one cell capable of calling the
contents of another. The object in
MatheMagic, on the other hand, is
formulas which are represented by
whatever words the user chooses.
This allows formulas to be entered in-
to MatheMagic with little or no trans-
lation. Mistakes are harder to make,
and the fixing of mistakes is much
easier.

MatheMagic is not a wonder in the
art of working on arrays. It can work
with arrays, but it does so with
somewhat more difficulty. The user
must be skilled to get it right. The
user will also find the display of
MatheMagic, which is designed for
formulas, somewhat less satisfying
than that of a spreadsheet for work-
ing with arrays. A spreadsheet
displays the array in a way that allows
the user to see what is going on.
MatheMagic does not.

A comparison of MatheMagic to
spreadsheet programs reveals two
strongly contrasting approaches to
calculation, each of which is useful in
different contexts. Indeed, their re-
spective strengths and weaknesses
are strongly complementary. Each is
strong where the other is weak. Just
as I would not sell BASIC expecting
MatheMagic to replace it, I would not
sell my copy of VisiCalc expecting
MatheMagic to replace it.

The value of MatheMagic is not in
its replacement value. It is in its abili-
ty to evaluate complex formulas and
use those formulas in a modular way.
If you need to write quick and dirty
programs to translate things from
one format to another, BASIC is in-

to turn it into a $20 (or even a $200)
calculator." They are, of course, right.
I wouldn't do it either. The problem is
that MatheMagic is more than a cal-
culator. It's really a "Formula Evalu-
ator." ISM needs, I think, to refine the
vocabulary with which they describe
their product if it is to reach the suc-
cess of which it is capable.

MatheMagic versus the
spreadsheets
It is important that a review of
MatheMagic compare the program
with programming languages like
BASIC because it is, in some sense,
an easy-to-use mathematical applica-
tions programming language. As
was noted early in this article, how-
ever, MatheMagic is hardly unique in
this respect. To succeed, Mathe-
Magic is going to have to compete
with, and differentiate itself from,
VisiCalc and the many other Visi-
Clones that lead the microcomputer
software market.

Despite the fact that MatheMagic
and the spreadsheets are basically
doing the same thing, e.g., perform-
ing calculations on numbers, this dif-
ferentiation really isn't very difficult.
Spreadsheets excel in tasks that in-
volve working with arrays. They are
at their best when a large number of
related numbers vary according to a
limited number of assumptions.
They cannot, as a rule, do anything
with arrays that one might like. In-
deed they are generally rather weak
as matrix manipulators, but for
almost any kind of manipulation or
modeling task that involves large
numbers of related numbers, they
are hard to beat.

It is this characteristic of spread-
sheets that have made them par-
ticularly popular in business. Visi-
Calc is a great tool for predicting the
long-term impact of a small drop in
stock prices. SuperCalc is a fantastic
program for manipulating a budget
until it works. But whatever the
talents of spreadsheets in dealing
with tables of numbers, they are not
at their best when it comes to calcu-
lating complex formulas that involve
the manipulation of large groups of
numbers toward a particular end
result.

Electronic spreadsheets are predi-
cated on the metaphor of the accoun-
tant's spreadsheet. The central unit is
the cell and it is the contents of cells
that are manipulated within the

MAIL80 1.1_______________________
Pegasus-Basis, Inc.
670 International Pkwy Suite 100
Richardson, TX 75081
This new release will run on virtually
all CP/M* (and MP/M*) microcom-
puters including the HP-125 and
Vector 2600.
New features include:
1) Telephone extension and a 28
character comment line have been
added to the customer/client record.
2) The user can specify which drive
or drives the data files are on. 3) In
addition to mailing labels, the system
now prints file and Rolodex cards.

C-Food Smorgasbord 1.4
Lifeboat Associates
1651 Third Avenue
New York, NY 10028
The TIP utility program has been im-
proved to accept hexadecimal values
when you are typing control se-
quences; tiptest.c and testl.bat are
added as a small example of how to
use the tip package.

Lattice "C" 1.04 ___________________
Lifeboat Associates
1651 Third Avenue
New York, NY 10028
1) Includes a new utility program,
Object Module Disassembler; for
programmers who wish to debug C
modules at the machine code level,
the OMD program provides a listing
of the machines language instruc-
tions, generated for a particular C
source program. 2) The -d compile
time option for LC1 has been im-
plemented in this version of the com-
piler, and differs from its description
in the manual in only minor details.
The -i option is completely new. The -
id reads all # include files from drive
"d", where "d" is a single alphabetic
character, either upper or lower case,
specifying a disk drive ("a" for A:,
etc.).

Lifelines/The Software Magazine, Volume IV, Number 2 13

Now dBASE II is made easy with Quickcode by Fox &
Geller. QUICKCODE is a program generator, a computer program which writes com-

FAST AND SIMPLE
With QUICKCODE you can generate a customer database in 5 minutes. Its that

fast. All you have to do is draw your data entry form on the screen. It's that simple!

NO PROGRAMMING REQUIRED
QUICKCODE writes concise programs to set up and maintain any type of

database. And the wide range of programs cover everything from printing mailing labels
and form letters, to programs that let you select records based on your own requirements.
There are even four new data types that are not available with dBASE II alone.

f YOUR CONTROL
And since you work directly with your information at your own speed and

your own style, you maintain complete control. Telling your computer what to do has
never been so easy.

QUICKCODE, by Fox & Geller. Absolutely the most power-
ful program generator you've ever seen. Definitely the
easiest to use.

Ask your dealer for more information on QUICKCODE and all the other
exciting new products from Fox & Geller. FOX&GELLER

Fox & Gel ler , Inc. Dept. LI F 001 604 Market Street Elmwood Park, N.J. 07407 (201) 794-8883

QUICKCODE trademark of Fox & Geller, inc
dBASE II is a trademark of Ashton-late

Lifelines/The Software Magazine, July 198314

Accessing the MP/M Operating
System From Within dBASE

by Dr. Howard Vigorita
INCE ACQUIRING BOTH dBASE AND MP/M ABOUT

41 one year ago, I have been stymied in my quest to
access the wealth of MP/M facilities from within
the menu driven applications package I have de-

veloped with dBASE. Such features as system clock ac-
cess, process scheduling, password protection, etc., have
been totally inaccessible because of differences between
the CP/M and MP/M implementation of SUBMIT files
which render the dBASE 'QUIT TO' mechanism inopera-

must be able to find a free memory area in which to load
the program requested by the command line. In the case
of a PRL (page relocatable) file, the CLI will find the
smallest free memory segment that the PRL file will fit in-
to, automatically relocate it there, and then execute it.
Since all of the usual CP/M built in commands and MP/M
utilities are supplied as PRL files with MP/M, no limita-
tion will be experienced on most MP/M systems. To run a
COM file, however, the CLI needs an available absolute

tive. However, this may have been a blessing in disguise.
An article appearing in the July, 1982 issue of Lifelines has
suggested an approach vastly superior to any SUBMIT-
based technique.

My technique involves a two-stop process. First a short
program loading interface is installed into the dBASE sort-
ing area (anywhere between address A400 hex and
BDOS). The actual installation of the loader can be done
using DDT or with the forthcoming dBASE version 2.4's
LOAD command at run time. Second a dBASE command
file is used to poke to the loader's command line buffer
after which the loader routine is called as a subroutine.

The loading interface is quite trivial under MP/M II. The
operating system provides an XDOS function #150 which
sends a command line to the MP/M Command Line Inter-
preter (CLI, nee CCP under CP/M). The routine, complete
with housekeeping calls, can be found in Digital
Research's MP/M II, Application Note #6. 1 merely ORG'd
it to begin at 42900d with the command line at 43000d,
well within the dBASE sort buffer at easy to remember
round addresses. I chose a location well above A400h
(= 39360d) so as to leave a small area for poking shorter se-
quences such as the list detach calls which I use at the end
of print sequences.

A companion dBASE command file provides a menu of
common commands together with a run time input com-
mand line for more knowledgeable users. It converts the
requested command, one character at a time, into ASCII
decimal, while poking the result into the loader's com-
mand line. Note that in order to provide the full character
set of which my terminal is capable, the ASCII string table
had to be formulated in two concatenated parts with each
part containing only one of the two quote characters so
that the other quote character could serve as the string
delimiter.

The advantage inherent in this loader technique is that
almost any command line capable of input when the op-
erating system prompt is displayed can be run from with-
in dBASE without having to reload dBASE on return. An
even greater advantage is that almost any COM or PRL file
can be run without having to reassemble it to a new load
location. I say "almost" because a SUBMIT command
doesn't work and changing the default user or drive can
only be done by poking the first character of the command
line structure.

The major limitation of this technique is that the CLI

memory segment large enough to hold the program. On
my 4 bank 2 console Altos system, I can only execute
WordStar from within dBASE on one console if the other
console is inactive.

Now if I could just get my hands on a dBASE native code
compiler. . . .

; SendCLLasm
; Assembly language fragment to send a command to the MP/M II

Feature

; Command Line Interpreter

ORG OOOh
Base EQU $
BDos EQU Base + 0005h

; XDos function equate table:
SetPriority EQU 145
AttachConsole EQU 146
AssignConsole EQU 149
SendCliCommand EQU 150
GetConsoleNum EQU 143

; Program body:
ORG 42900 ; set up an entry point

JMP 42923
; @42900

ORG 42923 ; assemble so command

LXI h.OOOOh
; line at 43000
; save the old stack

DAD sp
; pointer

SHLD OldSp
LXI sp,Stack + 0016h ; set up a new stack

MVI e,190
; pointer

MVI c,SetPriority ; raise console priority
CALL BDos
MVI c,GetConsoleNum ; get & fill in console #
CALL BDos
STA AssignPB
STA CliCommand + 1
LXI d.AssignPB •
MVI c,AssignConsole ; assign console to CLI
CALL BDos
INR a
JZ Finish ; exit if assignment fails
LXI d,CliCommand ; otherwise,
MVI c,SendCliCommand ; execute command
CALL BDos
MVI c,AttachConsole ; reclaim the console

(continued on next page)
Lifelines/The Software Magazine, Volume IV, Number 2

CALL BDos
MVI e,200
MVI c,SetPriority ; restore default priority
CALL BDos

Finish LHLD OldSp ; restore old stack pointer
SPHL
RET

; then return

; Data and storage areas

AssignPB:
DB $-$; console number
DB ‘cli ; Command Line

; Interpreter name
DB 0 ; null end of name marker

CliCommand:
DB 0 ; default disk and user
DB $-$; console number

; 50 byte command line:
DB
DB 0 ; terminate with a null

Stack DS 016h
OldSp DS 02h

END

STORE ‘DIR * . DBF[SYS]’ TO Command
CASE Choice = 3

STORE ‘DIR * . CMD[SYS]’ TO Command
CASE Choice = 4

STORE ‘SDIR’ TO Command
CASE Choice = 5

STORE ‘SDIR * . DBF’ TO Command
CASE Choice = 6

STORE ‘SDIR *. CMD’ TO Command
CASE Choice = 7

STORE ‘STAT’ TO Command
CASE Choice = 8

STORE ‘ERAQ * . BAK’ TO Command
CASE Choice = 9

STORE ‘ERAQ TEMP* * ’ TO Command
CASE Choice = 10

STORE ‘SET [PROTECT = OFF]’ TO Command
CASE Choice = 11

STORE ‘SET [PROTECT = ON]’ TO Command
CASE Choice = 12
@ 10,2 SAY ‘Enter systems command ’GET MCommand

READ
STORE MCommand TO Command
ERASE

OTHERWISE
STORE T TO Done
loop

ENDCASE★
* poke command one character at a time into command buffer
STORE 0 TO Cnt
STORE LEN(TRIM(Command)) TO Length
DO WHILE Cnt < Length

* note that default will be space character
POKE cliBuffer + Cnt, 32+ @($(Command,Cnt + 1,1),ASCII)
STORE Cnt + 1 TO Cnt

ENDDO WHILE Cnt < Length
*

* terminate the command with a NULL and call as subroutine
POKE cliBuffer + Length, 0
SET CALL TO Loader
CALL★
* subroutine returns here and continues

WAIT
ERASE

ENDDO WHILE .not.Done
RETURN g

* SendCLI.cmd
* sub menu to send commands to the MP/M II operating system via its
* XDOS function #150 (Send CLI) facility. This routine expects to find an
* assembly language routine installed in dBASE at location 42900d with
* the command buffer at 43000d.
*

* Note: dBASE version prior to 2.3C may require a dummy argument
* with CALL statement
CLEAR
*

* ASCII character set following space character
STORE ‘!“#$°/o&’+;
" '()*+,-./0123456789:;< = >?@ABCDEFGHIJKLM
NOPQRSTUVWXYZ[]” + ;
“t<‘abcdefghijklmnopqrstuvwxyz{: }” TO ASCII★
STORE 42900 TO Loader
STORE 43000 TO cliBuffer
STORE* ’ ;

TO MCommand
STORE 0 TO Choice
STORE F TO Done
DO WHILE .not.Done

@ 0,25 SAY * Operating System Command Menu ’
@ 3,15 SAY * 0. Return to the main menu’
@ 5,15 SAY ‘ 1. Display short directory — all files’
@ 6,15 SAY* 2. — database files’
@ 7,15 SAY’ 3. — command files’
@ 8,15 SAY ‘ 4. Display extended directory — all files’
@ 9,15 SAY ‘ 5. — database files’
@10,15 SAY* 6. — command files’
@12,15 SAY * 7. Report of disk drive free space’
@14,15 SAY * 8. Erase — any files of type “BAK” ’
@15,15 SAY ‘ 9. — any files beginning with “Temp” ’
@17,15 SAY ‘ 10. Turn password protection off’
@18,15 SAY ‘ 11. Turn password protection on’
@20,15 SAY ' 12. Compose your own custom tailored command’
@23,28 SAY ‘Enter your choice ’’ GET Choice PICTURE *##’

READ
*

ERASE
DO CASE
CASE Choice = 1

STORE ‘DIR * . *[SYS]’ TO Command
CASE Choice = 2

Renew

We’re looking forward to hearing from any of
you August subscribers who haven’t called or
written. If your subscription started with the
August ’82 issue you should have received a let-
ter from us, urging you to renew. You can see
that Lifelines/The Software Magazine has
given you value this past year and we’re expec-
ting your support again. Don’t delay! Send your
check right away or get out your VISA or
MasterCard and call Lifelines/The Software
Magazine Subscription Dept, at (212) 722-1700.
The address is 1651 Third Avenue, New York,
NY 10028.

16 Lifelines/The Software Magazine, July 1983

Stockvue ReviewedFeature

by Robert P. VanNatta
My immediate impression upon first
loading this program was that it was
something that had been download-
ed from a cassette driven Radio shack
Model I. Subsequent correspon-
dence with the authors confirmed
my suspicions (only to the extent that
they acknowledge that it was written
on TRSDOS based Microsoft BASIC
and lately downloaded to CP/M and
compiled with the Microsoft
compiler).

I am told that the authors are con-
sidering a new version which may
have disk or printer capabilities (or
both), so if this is a relevant con-
sideration to a prospective user, it
might pay to check for a new version.

Lifeboat CP/M (which emulates both
an ADM3a and an ADM 31) and
Pickles and Trout CP/M (which
doesn't emulate anything). No in-
compatibilities were observed.
Although I must grudgingly admit
that the installation routines worked,
there was an unmistakable hacking
noise emanating from my computer
throughout the installation process.
The installation program is 39K of
compiled BASIC, which has me
wondering whether it should have
an ease of use rating higher or lower
than one might apply to DDT.COM.

The documentation is 47 pages long
and is excellent. The price is advertis-
ed at $189.00 postpaid.

TTF YOU ARE TRYING TO MAKE
■ a buck in the stock or stock op-
■ tions market, Star Value Soft-
■ ware of 12218 Scribe Dr.,

JL Austin, Texas 78759 has re-
leased a stock and option analysis
program that might be of some
interest.

If you are trying to make a buck in the
stock or stock options market, Star
Value Software of 12218 Scribe Dr.,
Austin, Texas 78759 has released a
stock and option analysis program
that might be of some interest.

Stockvue, as it is billed, is effectively
a dedicated spreadsheet suitable for
analyzing stock and stock option
trades. The user can enter such infor-

Audience
The usefulness of this program is
probably limited to those who trade
stock options and who, in addition,
are convinced that they can never
learn to run Visicalc (or a Calc-clone).

Functionally, Stockvue is a spread-
sheet dedicated to evaluating stocks
and stock options. Use of the pro-
gram consists of moving the cursor
around the screen in a spreadsheet
fashion and entering appropriate
values. Recalculations are automatic.
As such, it does nothing that cannot
be constructed on a Calc-clone. The
trade-off is simple. You use a spread-
sheet and build your own model, or
you buy Stockvue and use their
model. The advantage of rolling your
own is, of course, the flexibility in be-
ing able to change it.
My biggest criticisms of Stockvue
relate to its non-features. Stockvue
has neither file nor printer routines.
This effectively means you cannot
store or recall any information about
any of your calculations in any
fashion, except by copying it down
on an old envelope with a pencil.
This writer for one, finds it a bit of-
fensive to sit down behind a $5000
computer which in turn is plugged
into a $2000 printer, and find a pro-
gram that is incapable of making a
permanent record of my work.

mation as contemplated trade dates,
interest rates, sticking price and the
like; Stockvue will compute the
percentage gain or loss, the gain or
loss in dollars, and the effective
return on your money.

Versions are advertised as being
available for the TRS-80 Models I and
III(TRSDOS), the IBM-PC(PCDOS),
and CP/M. The version examined for
this review was the CP/M variant. It
is compiled in Microsoft BASIC. The
program file is 40K in size and is said
to require at least a 56K system to run
(and perhaps more). Under CP/M, a
24 x 80 terminal is required. The pro-
gram only needs 11 keys, most of
which are user definable, so it can be
described as reasonably hardware
independent. A terminal capable of
highlighting or generating inverse
video makes for a little more pleasant
display but is not required.
The terminal codes are stored in a
disk file, and suggested installation
files are provided for the ADM3a,
Adds Viewpoint, Heath H19 and
ACT-IV terminals. If your terminal is
not one of those four (and whose is?),
you must struggle through an
awkward but usable terminal in-
stallation program and enter your
terminal codes one at a time. This
writer brought the program up on a
TRS-80 Model 16 using ATON CP/M
(which emulates a SOROC 120),

Conclusions
I was unable to uncover any glaring
bugs in the program. It appears to
perform exactly as documented;
however, this writer has rarely seen
more code (40K) that did less. The
limitation of Stockvue is in its very
narrow audience. If you: 1) are a
stock option trader (it won't handle
commodities); 2) are unwilling or
unable to build your own model on a
spreadsheet; and 3) have an ade-
quate supply of pencils and used
envelopes for recording your calcula-
tions, this program merits considera-
tion for use; otherwise, forget it. n

Lifelines/The Software Magazine, Volume IV, Number 2 17

Users Group Corner

New York Amateur Computer Club
P.O. Box 106 Church St. Station
New York, NY 10008
The NYACC was founded in 1976 and is the largest com-
puter club in New York City supporting all types of
microcomputers and many users groups. It is a nonprofit
group that has been extensively involved in the cataloging
and distributing of public domain software and sponsors
the SIG/M along with the Amateur Computer Group of
New Jersey (ACGNJ). The club has a hot line with a re-
corded message announcing the date and location of all of
the meetings in the New York City area. The NYACC is
editing and distributing PC/Blue: The Public Domain
Software Library for PC-DOS, along with publishing a
catalog. It also publishes catalogs (seven, currently) for
CPMUG and SIG/M software. The NYACC publishes a
newsletter in which it announces new public domain soft-
ware. Dues are $15 per year.

The catalogs are available by mail from the NYACC.
Each catalog is $10 with shipping to North America and
$15 with overseas airmail. All orders must be prepaid in
U.S. funds.

The diskettes are available from many local computer
clubs. They are also available by mail. The CP/MUG vol-
umes are available from the CP/M User's Group (see be-
low). The SIG/M volumes are distributed on 8" by the
SIG/M at Box 97, Iselin, N.J. 08830.

correspondence must be via mail.
Future additions to the Catalogs, as well as abstracts of

all new CPMUG releases will be published in Lifelines™
The Software Magazine™.

Please place requests for Library software, orders for
Lifelines, and comments on any other matter, on separate
notes in order to expedite replies. (Checks must be in U.S.
currency drawn on a U.S. bank). Although Lifelines and
CPMUG are in the same building, they are not part of the
company.

Members receiving the material are reminded that
software contributions are necessary if the exchange
program is to prosper. Software contributions are gladly
received for inclusion into the Library with the under-
standing that the contributor is authorized to make the
material available to others for their individual non-
commercial use.

Software should be accompanied by sufficient docu-
mentation in the form of internal comments or accom-
panying *.DOC file to permit the material to be applied
and/or modified. Where appropriate, the documentation
should describe any supporting software (interpreter,
memory, clock, etc.) necessary to utilize the routine. For
your convenience, a comprehensive submittal form is
included on most distributed diskettes. Contributors are
invited to request any Library Volume in exchange for the
one submitted. H

CPMUG
The CP/M Users Group
1651 Third Avenue
New York, New York 10028

As of March, 1983, the Library contained nearly 100
Volumes of software ranging from language interpreters,
editors, and assemblers in full source code, to games and
pictures. This software is available on 8" single density
CP/M-80 and SB-80™ diskettes, on North Star diskettes
readable by users of double-density CP/M-80 1.4, double-
density CP/M-80 2.2, or quad capacity CP/M-80 2.2, or on
16-sector diskettes readable by Apple II users.

The complete CPMUG™ catalog, providing
information about each Volume, is available for $10. pre-
paid to the U.S., Canada, and Mexico, $15. prepaid to all
other countries. (All checks must be in U.S. dollars drawn
on a U.S. bank).

Software in the library, obtainable exclusively on disk-
ettes, is available for a prepaid media and handling
charge, as follows:

Version 2 For Z-80, CP/M (1.4 & 2.x),
& NorthStar DOS Users

The complete professional software system, that meets
ALL provisions of the FORTH-79 Standard (adopted Oct.
1980). Compare the many advanced features of FORTH-
79 with the FORTH you are now using, or plan to buy!
FEATURES OURS OTHERS
79-Standard system gives source portability. YES
Professionally written tutorial & user manual. 200 PG.
Screen editor with user-definable controls. YES
Macro-assembler with local labels. YES
Virtual memory. YES
BDOS, BIOS & console control functions (CP/M). YES
FORTH screen files use standard resident

file format. YES
Double-number Standard & String extensions. YES
Upper/lower case keyboard input. YES
APPLE I l/l l+ version also available. YES
Affordable! $99.95
Low cost enhancement options;
Floating-point mathematics YES
Tutorial reference manual
50 functions (AM951 1 compatible format)

Hi-Res turtle-graphics (NoStar Adv. only) YES

FORMAT
8" IBM
8" IBM

North Star/Apple
North Star/Apple

$ PER VOLUME
$13.
$17.
$18.
$21.

DESTINATION
U.S., Canada, Mexico
All other destinations
U.S., Canada, Mexico
All other destinations

FORTH-79 V.2 $99.95
ENHANCEMENT PACKAGE FOR V.2:

Floating point $ 49.95
COMBINATION PACKAGE (Base & Floating point) $139.95

(advantage users add $49.95 for Hi-Res)
(CA. res, add 6% tax; COD & dealer inquiries welcome)

PLEASE CLEARLY SPECIFY THE FORMAT YOU WANT
WITH YOUR ORDER

This payment covers the cost of the diskette(s),
packaging, and postage. Domestic shipping is via UPS
where a full street address is given; all other orders are via
U.S. Postal Service.

Please note: CPMUG has no telephone facilities; all

MicroMotion
12077 Wilshire Blvd. # 506
L.A. .CA 90025 (213) 821-4340
Specify APPLE, CP/M or Northstar
Dealer inquiries invited.

Lifelines/The Software Magazine, July 198318

W
ith Lifelines/The S

oftw
are M

agazine helping you econ-
om

ize on the high cost of m
icrocom

puter softw
are, you

have a subscription that pays for itself.

To receive Lifelines/The S
oftw

are M
agazine, fill out the

address form
 below

. All orders m
ust be prepaid. C

hecks
should be in U

.S
.$, draw

n on a U
.S

. bank, and m
ade

payable to Lifelines P
ublishing C

orporation. Indicate
your paym

ent below
:

$24 for 1 2 issues (U
S

, C
an., M

ex.)—
1 year

$50f for 12 issues (other countries)—
! year

P
aym

ent:
D

C
heck

D
V

IS
A

[

M
asterC

ard
C

ard #

E
xpiration D

ate
If you have any questions, call us at (212) 722-1700.

Please send inform
ation on back issues

Tell m
e about the index to past issues

S
end dealer inform

ation
I am

 renew
ing m

y subscription
‘The C

P
/M

 U
sers G

roup is not affiliated w
ith D

igital R
esearch, Inc.

fair delivery

Lifelines, The S
oftw

are M
agazine are tradem

arks of Lifelines P
ublishing C

orp.
IBM

 is a tradem
ark of IB

M
.

SB-80 and S
B

-86 are tradem
arks of Lifeboat A

ssociates.
M

S is a tradem
ark of M

icrosoft, Inc.
C

P/M
 is a registered tradem

ark of D
igital R

esearch, Inc.
C

opyright ©
 1982, by Lifelines P

ublishing C
orporation.

If you’re serious about softw
are, you should be getting

Lifelines/The S
oftw

are M
agazine.

Lifelines/The S
oftw

are M
agazine can help you know

 and
use your softw

are efficiently. P
roducts com

patible w
ith

C
P

/M
®

-80, SB-80™
, IB

M
™

 P
ersonal C

om
puter D

O
S

(M
S™

D
O

S, SB-86™
), U

N
IX™

, and other 8- and 16-bit op-
erating system

s are covered. R
ead:

A
nalyses of the latest versions

N
ew

 product inform
ation

B
ug reports, fixes, and patches

R
eview

s, com
parisons, and user feedback

The latest on volum
es from

 The C
P

/M
 U

sers G
roup*

N
am

e

C
om

pany N
am

e

A
ddress

C
ity

S
tate/C

ountry

Zip ---

Ar
e

yo
u

m
is

si
ng

 s
om

et
hi

ng
?

Lo
ok

 in
si

de
, a

nd
 fi

nd
 o

ut
 h

ow
 y

ou
 c

an
 k

ee
p

in
to

uc
h

w
ith

 s
of

tw
ar

e
ch

an
ge

s.
 W

ith
 u

pd
at

e
an

al
ys

es
, b

ug
 r

ep
or

ts
, p

at
ch

es
, t

ip
s

an
d

in
-d

ep
th

re
vi

ew
s,

 w
e

pr
ov

id
e

tim
el

y
ne

w
s

on
 y

ou
r

so
ftw

ar
e

an
d

ho
w

 y
ou

 c
an

 g
et

 th
e

m
os

t o
ut

 o
f i

t.

Thunderclock Routine
by David W. Walker

CLOCK

;Program to read a Thunderclock card, in an Apple II with
;a Z80 Softcard, and print the date and time to the
;console, in the format
; THU NOV 11 8:35:24 AM

; by D. W. Walker 11 Nov 1982

This Program is for the Thunderclock
routine written up in June 1983 Lifelines

p31
9

9

9

011D7C
011ED620

0120 67

Here, clock has been found, at the slot
addressed by H,L

change En
toCn

MOV
SUI

MOV

A.H
20H ;

H,A
*

0121 3E25 MVI A,‘°/o’ control char
F3DE = ZCARD EQU 0F3DEH ; address of for clock

; Z80card 01233245F0 STA ACC65 pass to 6502
F3D0 = VEC65 EQU 0F3D0H ; pass 6502 accumulator

; subroutine 0126 2E0B MVI L,0BH point H,Lto
; address clock write

F045 = ACC65 EQU 0F045H ; pass 6502 routine
; accumulator 128 22DOF3 SHLD VEC65 pass

subroutine
F200 = BUFFER EQU 0F200H ; date/time address

; string buffer 012B E5 PUSH H save clock
address

0009 = PUTSTR EQU 9 ; CP/M “print 012C2ADEF3 LHLD ZCARD get address
; string” code of Z80 card

0005 = BDOS EQU 5 ; CP/M BDOS
; jump

012F77 MOV M,A write to it

9 ; Control passes to 6502, to execute clock write
0100 ORG 100H ; vector ; routine at $Cn0B, with ’°/o’ in accumulator.

address ; That sets up the clock to return the date and
9 ; time in the specified format
; Find card: check first three bytes of each slot 0130 E1 POP H recover
: until Thunderclock found or all slots checked clock

address
0100 25E8 MVI H,0E8H ; first slot will 0131 2E08 MVI L,08H point to

; be 7 clock read
0102 2E02 NXTSLT: MVI L.02H ; address = routine

; En02 013322DOF3 SHLD VEC65 pass
0104 25 DCR H address to
0105 7C MOV A.H ; check card 6502

; high byte 0136 2ADEF3 LHLD ZCARD get address
0106 FEEO CPI 0E0H ; slot 0, no of Z80 card

; clock found 0139 77 MOV M,A write to it
0108 C8 RZ ; soreturn

Control passes to 6502, to execute clock read
0109 7E MOV A,M ; get byte at routine at $CnO8. That routine leaves the time

; En02 string in the buffer at $200 (F200H).
010A FE28 CPI 28H ; third byte of Now, send that string to the console.

; clock
; firmware 013A3E24 MVI A,’$’ string

010C C20201 JNZ NXTSLT ; no match, try terminator
; next slot 013C2117F2 LXI H,BUFFER + 17H end of string

010F2D DCR L ; point to 013F77 MOV M,A stuff
; En01 terminator

0110 7E MOV A,M ; get byte 01401101F2 LXI D,BUFFER + 1 point to start
0111 FE78 CPI 78H ; second byte of string

; ofclock 01430E09 MVI C,PUTSTR “print
0113C20201 JNZ NXTSLT string” code
01162D DCR L ; point to 0145CD0500 CALL BDOS print the

; EnOO string
0117 7E MOV A,M 0148 C9 RET and return to
0118FE08 CPI 08H ; first byte of

; clock 0149 END
CCP

011AC20201 JNZ NXTSLT

Lifelines/The Software Magazine, Volume IV, Number 2

Feoture Demonstrating the High Precision
Integer Math Library: Some

Interesting Math
Programs

by Thomas Hill
of the programming load, allowing us to concentrate on
the task at hand. If you will study the listing, you will see
that I have included code to allow the user to select the
starting point for the prime number generation. This
allows us to look for primes beginning at (say) 123,456,789.
Checks are included at the input of a starting value to
detect even input values and to make the input odd by
adding one to it before starting the prime search. This will
prevent starting something doomed to failure. A check is
also made after printing each prime value for a CON-
TROL-C abort at the keyboard. This provides an escape
route back to CP/M besides the RESET button.

Included in the library listing in previously published in
Lifelines (June, 1983) is an improved version of this
algorithm, adapted from Knuth's "Art of Computer Pro-
gramming." If we were to use this 'built-in' function,
rather than write one of our own, it would result in a pro-
gram which accepts the input, passes an input pointer to
the PRIME? module, and receives a YES/NO answer from
the module. If the answer is yes, then we print the value.

Least common multiple and
greatest common divisor

""■TN A PREVIOUS ARTICLE I PRESENTED A LIBRARY OF
■ routines designed to implement high precision in-
■ teger math functions. In this article I will show how
■ to use the library to create some dedicated math

JL programs to calculate prime numbers, greatest
common divisors, least common multiples, and a
pseudo-random number generator.

Review
In the last article I presented the source code for the sim-
ple mid-level arithmetic functions of ADDITION, SUB-
TRACTION, MULTIPLICATION, DIVISION, MODU-
LUS, and SQUARE ROOT. By using these modules in a
structured fashion, we may develop further applications.
Please refer the the accompanying program listings as I
discuss each of the following applications.

Generating prime numbers
Mankind has had a fascination with prime numbers for
centuries. The Greek mathematician Eratosthenes devel-
oped his famous "sieve" (known to all computer progam-
mers due to its popular use as a 'benchmark') before 200
B.C. To review, a prime number is an integer which has on-
ly two trivial divisors: the number one (1) and itself. Thus
two, three, five, and seven are all prime numbers. (One,
which meets all the requirements of being a prime num-
ber, is not included in the accepted list of primes, oddly
enough.) A program to generate prime numbers by 'brute
force' may be written using the following logic:

1. Since we know two (2) and three (3) are prime, print
them.

2. Set our test value T equal to three.
3. Add two (2) to the test value, T. (We add 2 here to keep

the value of T odd, since we need not be concerned with
even values, which are obviously not prime, being divisi-
ble by two.)

4. Set our test divisor equal to three. (The smallest non-
even number.)

5. Divide T by D.
6. If the remainder of the division in step 5 is equal to

zero, then the value T cannot be prime, since it was divid-
ed by a number other than itself. We therefore return to
step 3, selecting a new value.

7. If the remainder of the division in step 5 is not zero,
and the value of D is not equal to T, then we add 2 to D and
return to step 5.

8. If our test divisor equals T then T is prime. (Why?)
9. Print the value of T and return to step 3.
(Excuse the question in step 8 above. This was extracted

from a test in programming for a class I ohce taught.)
Listing 1 is the source for a program designed around the
logic presented. Note the use of external references to ac-
cess the High Precision (H.P.) library. This removes much

Listings 2 and 3 are programs to find the Least Common
Multiple (LCM) and the Greatest Common Divisor
(GCD) respectively of two input values. These two results
are of use in certain areas of number theory, and also (in
an extended form) in cryptographic theory. The GCD
algorithm used is extracted from Knuth, Volume 2, and is
presented herein:

1. Let A,B be two integers.
2. Le tR=A-B * INT(A / B), where the INT function

returns the INTeger portion of the division.
3. If R = 0 then the GCD = B, terminate the program.
4. Le tA<-B
5. Let B < - R
6. Goto step 2.
The INT function used in the algorithm is easily handl-

ed by using the truncating form of the DIV module. The
general form of the GCD program follows that of the
prime number generator: Accept the input values, find
the GCD, and loop for more input. In this case we ter-
minate when a CTRL-C is entered as an input value.

The LCM program uses the following algorithm (from
Knuth again):

1. Let A,B be two integers.
A*B
GCD(A,B)

2. LCM(A,B) =

Notice that this program takes advantage of the GCD
program. This means that we must rewrite the GCD pro-
gram to operate as a callable subroutine, with values pass-
ed as pointers and the result returned as a pointer. After

Lifelines/The Software Magazine, July 198320

rewriting the GCD in this fashion, it can be added to our
library and treated as any of the other modules in future
programs. The LCM program is also rewritten in a like
manner and added to the library. Listing 3 presents the
LCM program, using the GCD module included in the HP
math library.

Permutations and combinations
These two programs make use of the library module
NFACT, which produces the factorial of its integer input.
The formulas involved are:

n’
Permutations: P(n,m) = -------

(n -m)!

Combinations: C(n,m) = —---- =
n!(n-m)! m!

where "n!" and "m!" are the factorials of "n" and "m"
respectively. The factorial of a number may be computed
by forming the product:

n! = (n) * (n-1) * (n-2) * * (1)

Listings 4 and 5 are the sources for the Permutation and
Combination programs. Because of the use of the library
functions, they are extremely short, and are very easy to
debug since we know that the library routines have all
been checked for proper operation.

that the Greatest Common Divisor of the two arguments
is 1. Note that this DOES NOT say that the values are
prime, although they may be. It merely indicates that they
have no common divisors. For example, 25 and 4 are
relatively prime, but neither is prime. The "period" of a
random number generator is the number of values which
may be produced before the sequence of numbers is
repeated. Thus in the sequence:

2,4,5,7,8,3,2,4,5,7,8,3,2
the period is 6, because at the seventh value the sequence
begins to repeat. Our random number generator has a
theoretical period of (2tl27)-l, which is a rather large
number (although it is only a fraction of the maximum
value which the HP math library will handle.) Note that
this figure for m was chosen somewhat arbitrarily, and
could be increased greatly if desired.

Listing 6 is the module designed to be added to the HP
library. Note how short it is. The "randomness" of the
values produced are greatly dependent upon the selec-
tion of "m," "a" and "c7. The module allows the user to
"seed" the generator by passing a non-zero address in the
DE register. If thje contents of DE are not zero, then the
value pointed to by DE is used as the starting value for the
term "X(n)" in the generator formula. If the DE register is
zero, then the last computed value for the seed is used to
generate the next value. This makes "randomizing" the
generator easy. One need merely pass an arbitrary ad-
dress at the first call to the generator to seed it. One
method of generating this arbitary address could utilize
two readings of the refresh register of the Z80 micro-
processor to build a two byte value. Alternatively, one
could use two characters input by the user to build a value
in the DE register.

What guarantee do we have that the module in listing 6
actually produces random numbers? Well, since they are
generated by computer, they are not actually RANDOM,
because we may re-generate them by starting over with an
identical seed. But, by subjecting the values produced to
various statistical tests, we may state certain things about
the projected randomness of the method. These tests are
many and varied, and are not suitable for inclusion here.
Suffice it to say that the generator shown here has been
subjected to several of the more important tests outline by
Knuth, including the "spectral" test (which seems to be
the best of the lot), and it has passed with flying colors.
The numbers produced by this generator may be taken to
be random, in all but the most exacting situations.

Listing 7 is a program which uses the random number
generator to print a list of random values on the console.
By using the CTRL-P printer toggle when executing the
program, you may get a hardcopy listing to examine at
your leisure.

Final words
Well, I hope you found the material presented here in-
teresting. Next time, I will present a program which incor-
porates much of the HP math library into an 8-function
calculator which will accept algebraic expressions using
up to ten parentheses. It will provide the functions of ad-
dition, subtraction, division, multiplication, raise to a
power, square root, factorial, and modulus. Included with
it will be a parser module which accepts a parenthesized
numeric expression and converts it into a Polish
operand/operator stack structure before computing the
reSU ’ (continued on next page)

21

Random number generator
The final library module we will discuss is a random
number generator. This particular generator is adapted
from Knuth, Volume 2. (Any competent programmer
should have a set of Knuth's "Art of Computer Programm-
ing" on hand. There is a gold mine of material and techni-
ques contained therein.) The generator is called a "linear
congruential generator." Its general form is:

X(n + 1) = (a * X(n) + c) MOD m, (n >= 0)

The modulus "m" should be relatively prime to the
parameter "a." In the case of the generator used here, I
have selected "m" to be:

m = (21127) - 1

This selection assures us of the maximum period before
repetition begins. Further constraints governing the selec-
tion of "a" and "c" are:

1. "c" must be relatively prime to m,
2. (a-1) must be a multiple of "p," for every prime "p"

dividing "m"
3. (a-1) is a multiple of 4, if "m" is a multiple of 4.

For this version I have chosen the following values for "a"
and "c":

a = c = 2tl6 + l

This results in the following values:

m = 170,141,183,460,469,231,731,687,303,715,884,105,728
a = c = 65,537

The theoretical period of this generator is then the value
(m-1) .

Before we go further, I should define some of the terms
used in the discussion above; "relatively prime" implies

Lifelines/The Software Magazine, Volume IV, Number 2

Listing 1

PRIME GENERATOR

; This program will generate prime numbers, starting at the
; value input by the operator. Program execution is stopped by the
; detection of a CTRL-C at the console after the output of a value.

LXI D,IN$VALUE ; refresh value in
; working storage

CALL MOOV
LXI D,T
LXI H,DV
CALL DIVM

check remainder
LDA T
ORA A ; is it zero?
JZ NEXT1 ; yep, T is not prime,

; get next value

; The program utilizes the following modules from the HPMATH
; library:

EXTRN DIVM ; Modulus routine
EXTRN DIV ; general division

; routine
EXTRN HPINPUT ; input routine
EXTRN HPOUT2 ; output routine,

; version 2
EXTRN MOOV ; multiple byte move

; routine
EXTRN AD1 ; general purpose

; addition
EXTRN PARE ; compare two

; multibyte values

; the following equates are used:

CPM EQU 0
BDOS EQU CPM + 5
CONST EQU 11 ; status check at console
CONOUT EQU 02 ; console output
PRTBUF EQU 09 ; print string function

CR EQU ODH ; return
LF EQU OAH ; linefeed
BELL EQU 07H ; terminal bell

; if remainder is non-zero, increment divisor and check for
; equal to value. Note that divisor is also incremented by 2.

LXI H.TWO
LXI D,DV
CALL AD1

check for DV equal to current value
LXI H,DV
LXI D,IN$VALUE
CALL PARE
JNZ LOOP2 ; not done yet,

; try another divisor

DV and T are equal, T must be prime.
print it

LXI H.T
LXI D,IN$VALUE
CALL MOOV ; update value in

; working storage
MVI E.BELL
MVI C,CONOUT
CALL BDOS ; ring the bell
LXI D.T
CALL HPOUT2 ; print the value.

; begin the program in the code segment

CSEG

; Note that HPOUT2 destroys the value being printed. So it must be
; saved before outputting. This is why we keep a copy of the input
; value (and successive values) in the integer IN$VALUE.

PRIME1: LXI
MVI
CALL
LXI
CALL

D.SIGNON
C,PRTBUF
BDOS
D,IN$VALUE
HPINPUT

; tell world we are here

; get the starting value

; move the input value to internal storage

LXI H,T
LXI D,IN$VALUE
CALL MOOV

MVI
CALL
ORA
JZ
JMP

C,CONST
BDOS
A
NEXT1
CPM

; check for abort

; no abort, next value
; kill it

NEXT1: LXI
LXI

H.TWO
D,IN$VALUE

CALL AD1 ; increment last value
; by two

JMP LOOP1 ; continue the task.

; here is the data segment
DSEG

SIGNON: DB CR.LF,‘Prime Number Generator Program.’,
CR.LF

DB Version 1.0 -- Brute Force Method’.CR.LF.LF
DB

DB

; integer constants

'Enter starting value, terminated with equals sign
(=)’
CR,LF,">$’

ONE: DB 1.1
TWO: DB 1.2
THREE:

; storage

INSVALUE:

DB

DS

1.3

128
T: DS 128
DV: DS 128

; check value for evenness.

LXI H.TWO
LXI D.T
CALL DIVM ; use modulo and . . .
LDA T
ORA A ; check remainder for

; zero result
JNZ LOOP1 ; not even, start

; computing

input value is even, add one to it for odd

LXI H.ONE
LXI D,IN$VALUE
CALL AD1

; begin prime generation loop here.
; Continue until aborted from keyboard.

LOOP1: LXI D,THREE
LXI H,DV ; divisor set to three

; for start
CALL MOOV

; form T modulo DV

LOOP2 LXI HT END

Lifelines/The Software Magazine, July 1983

LXI D.VAL1
CALL GCD ; getGCD(A.B)

; inVALI
LXI D.TMP
LXI H.VAL1
CALL DIV ; VAL1 buffer = LCM(A,B)

; TMP now contains the LCM, so print it.

LXI D,LCMMSG
MVI C,PRTBUF
CALL BDOS
LXI D.TMP
CALL HPOUT2
LXI D.ASK
MVI C,PRTBUF
CALL BDOS
JMP LCMO

; utility routine; send CR,LF to console

CRLF: MVI E.CR
MVI C,CONOUT
CALL BDOS
MVI E.LF
MVI C,CONOUT
JMP

; data areas

DSEG

BDOS

SIGNON: DB ‘Least Common Multiple Test Program’,CR.LF
DB Version 1.0 -- September 22, 1982’,CR,LF,LF

ASK: DB ‘Enter two integers, terminated by an equals sign
; C = Y

DB CR.LF,>$’
LCMMSG: DB ‘LCM is $’

; storage

VAL1: DS 128
VAL2: DS 128
TMP: DS

END

128

Listing 2

LEAST COMMON MULTIPLE

; This program computes the Least Common Multiple (LCM) of two
; integers. The algorithm used is:

; Let A,B be integers.

; LCM(A.B) = ------ - -----
GCD(A,B)

; External modules from HP math library:

EXTRN MULT ; multiplication
EXTRN DIV ; truncated division
EXTRN GCD ; greatest common divisor
EXTRN MOOV ; multibyte move
EXTRN HPINPUT ; input routine
EXTRN HPOUT2 ; output routine, version 2

; CP/M equates

CPM EQU 0
BDOS EQU CPM + 5
CONOUT EQU 02
PRTBUF EQU 09

CR EQU ODH
LF EQU OAH

; program starts

CSEG

LCM: LXI D,SIGNON
MVI C,PRTBUF
CALL BDOS ; signon message

LCMO: LXI D.VAL1
CALL HPINPUT ; get first integer (A)
CALL CRLF
MVI E,‘>’
MVI C,CONOUT
CALL BDOS
LXI D.VAL2
CALL HPINPUT ; second value (B)

; check for both zero to abort program Listing 3

GREATEST COMMON DIVISOR

; This program accepts two multibyte integers and outputs the
; Greatest Common Divisor (GCD) using the following algorithm:

; 1. Let A,B be the input integers
; 2. LetR = A -B* INT(A /B)
; 3. If R = 0 then GCD = B, terminate
; 4. Let A <-- B
; 5. Le tB< -R
; 6. Goto step 2.

; External modules from the HP math library:

LDA
MOV
LDA
ORA
JZ

VAL1
B,A
VAL2
B
CPM ; abort to CP/M

take absolute values

LDA VAL1
ANI 7FH
STA VAL1
LDA VAL2
ANI 7FH
STA VAL2 ; strip sign bit from

; length indicators EXTRN SB1 ; general subract
EXTRN MULT ; multiplication
EXTRN DIV ; truncated division (INT)
EXTRN MOOV ; multibyte move
EXTRN HPINPUT ; input routine
EXTRN HPOUT2 ; output, version 2

; CP/M equates

CPM EQU 0
BDOS EQU CPM + 5
CONOUT EQU 02
PRTBUF EQU 9

; begin LCM computation
; The GCD module accepts value pointers in the HL and DE registers.
; The result is returned in the buffer at (DE), destroying the original value.
; The contents of (HL) are undisturbed.

LXI H.TMP
LXI D.VAL1
CALL MOOV ; save A for later
LXI D.TMP
LXI H.VAL2
CALL MULT ; form A * B in the

; TMP buffer
LXI H.VAL2 ; character equates

(continued on next page)
23Lifelines/The Software Magazine, Volume IV, Number 2

CR EQU ODH
LF EQU OAH
BELL EQU 07H

; program begins

CSEG

GCD: LXI D.SIGNON
MVI C.PRTBUF
CALL BDOS ; announce our presence

GCDO: LXI D.VAL1
CALL HPINPUT ; get the first input value
CALL CRLF
MVI E,’>’
MVI C.CONOUT
CALL BDOS
LXI D.VAL2
CALL HPINPUT ; second value

CALL BDOS
JMP GCDO ; do it again

; utility subroutine, send CR,LF to console

CRLF: MVI E.CR
MVI C.CONOUT
CALL BDOS
MVI E.LF
MVI C.CONOUT
JMP BDOS

; data

DSEG

SIGNON: DB ‘Greatest Common Divisor Program’.CR.LF
DB ‘Version 1.0 -- September 19, 1982’,CR,LF,LF

ASK: DB ‘Enter two integer values for GCD
; computations:’,CR,LF

DB >$’
GCDMSG: DB CR.LF.’GCD is$‘

; datastorage

VAL1: DS 128
VAL2: DS 128
R: DS 128

END

; now have both input values.
; If both are zero, abort program

LDA VAL1
MOV B,A
LDA VAL2
ORA B
JZ CPM ; both inputs zero,

; finished with program

; take the absolute value of both inputs
; by stripping sign bit from length indicator

LDA VAL1
ANI 7FH
STA VAL1
LDA VAL2
ANI 7FH
STA VAL2

; compute R

GCD1: LXI H.R
LXI D.VAL1
CALL MOOV ; R< -A
LXI D.VAL1
LXI H.VAL2
CALL DIV ; A = INT(A/B)
LXI D.VAL1
LXI H.VAL2
CALL MULT ; A = B* INT(A /B)
LXI D,R
LXI H.VAL1
CALL SB1 ; R = A -B* INT(A /B)
LDA R
ORA A ; is R = 0?
JZ DONE ; yes, print result

Listing 4

PERMUTATIONS

; This program generates the number of permutations possible for
; “n” items taken “m” at a time, using the following formula:

; P)n,m)
(n - m)l

; The program uses the following EXTERNALS from the HP math library:

EXTRN NFACT ; factorial
EXTRN DIV ; division
EXTRN SB1 ; subract routine
EXTRN HPINPUT ; input routine
EXTRN HPOUT2 ; output routine, version 2
EXTRN MOOV ; multibyte move

; CP/M equates

CPM EQU 0
BDOS EQU CPM + 5
PRTBUF EQU 09
CONOUT EQU 02

CR EQU ODH
LF EQU OAH

; program begins

CSEG

PERMUTE:
LXI D.SIGNON
MVI C.PRTBUF
CALL BDOS

PERO: MVI E,‘>’
MVI C.CONOUT
CALL BDOS ; prompt for first number
LXI D.VAL1
CALL HPINPUT ; and accept it
CALL CRLF
MVI E,’>’
MVI C.CONOUT
CALL BDOS ; now the second value
LXI D.VAL2
CALL HPINPUT ; and get it.

; R not zero, move things around

LXI D.VAL2
LXI H.VAL1
CALL MOOV ; A< -B
LXI D,R
LXI H.VAL2
CALL MOOV ; BC-R
JMP GCD1 ; do computation again

; get here when R = 0

DONE: LXI D.GCDMSG
MVI C.PRTBUF
CALL BDOS
LXI D.VAL2 ; B = GCD(a.b)
CALL HPOUT2
LXI D.ASK
MVI C.PRTBUF

24 Lifelines/The Software Magazine, July 1983

CR
LF

EQU
EQU

ODH
OAH

; program begins
CSEG

COMB: LXI D,SIGNON
MVI C,PRTBUF
CALL BDOS

COMBO: MVI E.’>’
MVI C.CONOUT
CALL BDOS ; get first value
LXI D.VAL1
CALL HPINPUT
CALL CRLF
MVI E.’>’
MVI C.CONOUT
CALL BDOS ; and second
LXI D.VAL2
CALL HPINPUT

; check for both inputs equal zero

LDA VAL1
MOV B.A
LDA VAL2
ORA B
JZ CPM ; if both = 0 then abort

; set up area TMP
LXI H.TMP
LXI D.VAL1
CALL MOOV ; pu tn ->TMP
LXI D.TMP
LXI H.VAL2 ; form TMP = (n-m)
CALL SB1
LXI D.TMP
CALL NFACT ; form (n-m)!, stored in

TMP
LXI D.VAL1
CALL NFACT ; form n!
LXI D.VAL1
LXI H.TMP
CALL DIV ; now form n! / (n-m)!
LXI D.VAL1
CALL HPOUT2 ; print the answer

; finished with the computations, get some more

JMP PERO

;send CR.LF to console

CRLF: MVI E.CR
MVI C.CONOUT
CALL BDOS
MVI E.LF
MVI C.CONOUT
JMP BDOS

SIGNON: DB ‘Permutation Test Program -- Version 1.0’,
CR-LF,LF

DB ‘Enter two integers, terminated by an equals
sign ’CR.LF,’$’

; data areas

VAL1: DS 128
VAL2: DS 128
TMP: DS 128

END

; check for both values = 0
LDA
MOV
LDA
ORA
JZ

VAL1
B.A
VAL2
B
CPM ; if both = 0 then abort

LXI H.TMP
LXI D.VAL1
CALL MOOV
LXI D.TMP
LXI H.VAL2
CALL SB1
LXI D.TMP
CALL NFACT
LXI D.VAL1
CALL NFACT
LXI D.VAL2
CALL NFACT
LXI D.TMP
LXI H.VAL2
CALL MULT
LXI D.VAL1
LXI H.TMP
CALL DIV

; VAL1 now contains answer, print it
LXI D.VAL1
CALL HPOUT2

; start computations

; putn-->TMP

; form (n-m) in TMP

; form (n-m)! in TMP

; form n!

; form m!

; form m! * (n-m)! in TMP

; now form n! / m!(n-m)!
; inVALI

; and get some more numbers
JMP COMBO

; send CR.LF to console
CRLF: MVI

MVI
CALL
MVI
MVI
JMP

E.CR
C.CONOUT
BDOS
E.LF
C.CONOUT
BDOS

SIGNON:

; data areas

DB

DB

DSEG

‘Combination Test Program - Version 1.0’,
CR.LF.LF
‘Enter two integers, terminated by equal signs.',
CR.LF,’$'

VAL1:
VAL2:
TMP:

DS
DS
DS

128
128
128

END

(continued on next page)
25

Listing 5

COMBINATIONS

; This program computes the value of “n” objects combined “m”at a time.
; The formula used is:

; C(n,m) =
n!

ml(n-m)!

; Externals used:

EXTRN SB1 ; subtraction
EXTRN NFACT ; factorial
EXTRN MULT ; multiplication
EXTRN DIV ; division
EXTRN MOOV ; multibyte move
EXTRN HPINPUT ; input routine
EXTRN HPOUT2 ; output version 2

; CP/M equates

CPM EQU 0
BDOS EQU CPM 4-5
CONOUT EQU 02
PRTBUF EQU 9

Lifelines/The Software Magazine, Volume IV, Number 2

Listing 6

RANDOM NUMBER GENERATOR

Listing 7

TEST RANDOM NUMBER GENERATOR

This program uses the following linear congruential generator to
produce random numbers for use with the HP math library:

; This program will test the random number generator implemented
; for the HP math library. After seeding the generator with the “value”
; which results by using the starting label as the representation of a
; multibyte integer, the program will enter an infinite loop, generating and
; printing random numbers until aborted by a keyboard input.

X(n + 1) = (a * X(n) + c) MOD m, (n >= 0)

Where
m = 21127-1
a = c = 2116 + 1

Externals

EXTRN DIVM ; modulus
EXTRN AD1 ; addition
EXTRN MOOV ; multibyte move
EXTRN MULT ; mutliplication

; declare entry points for the library

PUBLIC HPRAND ; random number
; generator entry

PUBLIC RNUM ; random number
; integer space

EXTRN HPRAND ; the random number
; generator

EXTRN HPOUT2 ; output routine, version 2
EXTRN RNUM ; random number buffer

; CP/M equates

CPM EQU 0
BDOS EQU CPM + 5
CONST EQU 11
PRTBUF EQU 09

CR EQU 0DH
LF EQU 0AH

; program begins

CSEG

TSTRND: LXI D.SIGNON
MVI C,PRTBUF
CALL BDOS
LXI D.HPOUT2 ; use this address (label)

; for seed
CALL HPRAND

; The storage space for the random number is declared to be PUBLIC
; to facilitate program access to it. In this way the calling program
; declares RNUM to be EXTRN and then references it just like any other
; label. The linker will resolve address values during program and
; library linking.

CSEG

HPRAND: MOV A,D
ORA

JZ

E

HPRND1

; if DE = 0 then use last
; seed value

LXI

CALL

H,XN

MOOV

; else use (DE) as
; new seed

HPRND1: LXI

LXI

D,XN

H,RMULT

; generate new
; random number

CALL
LXI
LXI

MULT
D.XN
H,CONST

; form (a * X(n))

CALL
LXI
LXI

AD1
D.XN
H,MODULUS

; form (a * X(n) + a)

CALL
LXI
LXI

DIVM
H.RNUM
D,XN

; take the modulus

CALL

RET

MOOV ; put new random
; number in public view

; data areas

DSEG

RMULT:
CONST: DB 3,01,00,01 ; a = c = 2116 + 1
MODULUS:

DB 10H,0FFH,0FFH,0FFH,0FFH,0FFH,0FFH,
OFFH.OFFH.OFFH.OFFH.OFFH

DB 0FFH,0FFH,0FFH,0FFH,7FH
XN: DS 128
RNUM: DS 128

; generator is now seeded, start printing values

LOOP: LXI D,0
CALL HPRAND
LXI D.RNUM
CALL HPOUT2
MVI C,CONST
CALL BDOS
ORA A
JZ LOOP ; look for abort

; from keyboard
JMP CPM

; messages

SIGNON: DB ‘Random Number generator test program’,CR.LF
DB ‘Version 1.0 - October 23, 1982’,CR,LF,LF,‘$’

; no data areas are needed

END

[Ed. Note: The author concedes that the Prime Number
algorithm in Listing 1 is something of a "Brute Force" approach.
One significant improvement would be to define a fourth 128-
byte buffer just above END, store into it the square root of each
new T value (perhaps somewhere near LOOP1), and compare
against that value instead of the whole T, above NEXT1.] g

OOPS:-
In our May 1983 issue under Software Notes, p.35, our
author's name Thomas L. Robb was inadvertently left off.

END

26 Lifelines/The Software Magazine, July 1983

Date Your Disks
TTT IS OFTEN USEFUL TO KNOW THE DATE ON WHICH
■ a disc was last used or changed: listing 1 shows a
■ short program which stores a date in the Directory
■ of the discs you are using. The program, which with

JL great originality I have called DATE.COM, should
be first run by the auto-start feature of CP/M, and "DATE"
should be patched into the system.

When run or called in this way, without parameters,
DATE searches the Directory of drive A for a filename
beginning with two slashes, and a filetype beginning with
an apostrophe, thus: //??????. '??. If no such "name" is
found, you will be asked to enter two characters for the
date of the day (or any other code you might prefer) and
three for the month (no CRs are needed, and ANY control
character or space will cause an exit to CP/M). Then the
program continues as if it had found the "name" in the
first place: it shows you what it found or what you en-
tered, as /-??????. '??. A CR confirms the entry and stores it
to the disc in drive A:; any other character will allow you
to change the year (for which a initial default of 82 is pro-
vided by the program). You will then again be allowed to
confirm and save the date with a CR, or redo the whole
entry with any other character.

What you have stored in the Directory of the disc in
drive A is the current date, which will remain available
throughout the session unless you change discs in drive
A. This current date you can store on any disc, in any
drive, by calling DATE with the drive-letters as param-
eters, thus: DATE A, or DATE CAB. The date is shown to
you for confirmation. It will remove any previous such
date, and is stored in the form /-15-Nov. '82 (lower case let-
ters will appear as such in the Directory, and the "name"
can be deleted only be ERA /*.* because CP/M accepts only
upper case for its entries). On the disc in drive A, then,
you may have both the II and the /- forms: the former is the
current date (which will of course be out of date on the
following day, so if you change discs in drive A, you must
be careful to check it); the latter is the date the disc was last
used.

The slash and hyphen were chosen because they will
appear first in alphabetized listings of the Directory, or
immediately after the disc name, if you use a cataloguing
system which employs the hyphen for that purpose.
When I begin to use a new disc, I try to remember to put a
name on the disc first, then a dummy date of last use (this
must be in the form /-??????./??), so that they show first
even in listings which are not alphabetized. These, and
subsequent dates saved in the Directory, are in the form of
"names" referring to dummy files of zero length: no space
is taken up on the data area of the disc. They can be en-
tered directly onto the disc with SAVE 0 NAME.

The program is documented, and where there are no
comments the symbolic names explain what is happen-
ing. It was assembled with the PASM Z80 system, and
uses a few Z80 codes: these should be easy to replace for
8080 operation. The PASM loader (PLINK) automatically

by Andrew Hughes
assigns a local stack area, and these statements do not
appear in the program: as only about a dozen bytes of
stack are needed, I doubt whether a local stack is neces-
sary. In my original, the error exits jump to a breakpoint
routine which announced an address from which I can, if
necessary, tell which error occurred. I've let them all fall
through to a warm boot: explicit messages could easily be
added.

PSA Macro Assembler [C12011-0102]

.MAIN. -
.radix 16

0100 Joe 100
; CP/M addresses, in hexadecimal

0005 bdos =5
005C feb = 5c
005D param,loc =fcb + 1
0080 buff =80
0000 warm.boot = 0

; CP/M functions, in hexadecimal
000E log = 0e
0011 find = 11
0013 delete = 13
0016 create = 16
0010 close = 10
0001 conin = 1
0201 conin2 =0201
0301 conin3 =0301
0009 conpr =9

; miscellaneous equates
OOFF fail =off

; insert a suitable error routine
0000 err = warm,boot
0000 drive.a =0
0020 end. param =20
0020 no.param = end. param
oooc length = end.todays.date-todays.date
000F make.bin =0f
000D cr =0d

00100 start:
0100 OEOE mvi eJog
0102 1E00 mvi e,drive.a
0104 CD 0005 call bdos

0107 0E11 mvi c.find
0109 11027C Ixi d.prev.date
010C CD 0005 call bdos
010F FEFF cpi fail
0111 200E jrnz ..1

0113 CD 0177 call input ; if no prev. date, enter it
0116 21 005D Ixi h.param.loc ; and exit if no
0119 7E mov a,m ; other drives are specified
011A FE20 cpi no.param
011C 20E2 jrna start
011E C30000 jmp warm.boot
0121 ..1:

(continued on next page)
Lifelines/The Software Magazine, Volume IV, Number 2

0121
0122
0123
0124
0125
0126
0128
0129
012B
012E
012F
0132
0134
0135
0136
0137
0139
013A
013D
013F

0141

0142
0144
0146

0149
014B
014E
0151
0154
0154
0157
0158
0158
0159
015A
015C
015F
0160
0161
0162
0164
0165
0167

016A
016C
016F
0175

02C6

0177
0177
017A
017D
0180
0183
0185
0186
0187
018A
018D
018E
0191

add a ; reg. a has the offset, in 0194 E5 push h
add a ; the default buffer, of the 0195 CD 01C6 call is.it.ok
add a ; FDB which has the pre- 0198 E1 pop h
add a ; vious date. Calculate off- 0199 2811 jrz save
add a ; set in bytes and add it to 019B 23 inx h ; not OK: Look at the year.
adi buff ; the buffer address. 019C E5 push h
mov 1,a 019D 11 0259 Ixi d.year
mvi h,0 01A0 CD01F3 call mess ; prompt for. . .
Ixi d.todays.date 01A3 E1 pop h
push d ; move prev. date to buffer 01A4 CD01DF call enter2 ; year (2 chars.)
Ixi b,length ; for today’s date. 01A7 CD01C6 call is.it.ok
Idir 01AA 20CB jrnz input ; not OK: do it all again.
pop d ; point to position for the ; This creates the date as a “Filename”, and
inx d ; hyphen or slash. ; saves an empty file, using no more space
inx d ; on the disc.
mvi a, ‘ ’ ; make today’s date into
stax d ; the disc date. 01AC save:
call is.it.ok 01AC 0E16 mvi c,create
jrz ..2 01AE 11 02C3 Ixi d,todays.date
mvi a,7’ ; restore prev. date if not 01B1 D5 push d

; O.K. and delete it 01B2 CD 0005 call bdos
stax d ; not OK, and delete it. 01B5 FEFF cpi fail

01B7 CA0000 jz err
mvi c,log 01BA DI pop d
mvi e,drive.a
call bdos 01BB 0E10 mvi c,close
a 01BD CD 0005 call bdos
mvi c,delete 01C0 FEFF cpi fail
Ixi d,prev.date 01C0 CA0000 jz err
call bdos 015C C9 ret
imp start
..2: 01C6 is.it.ok:
Ixi h,param.loc ; point to drives named. 01C6 21 02CF Ixi h.end.todavs.date
push h 01C9 E5 push h ; puta$forCP/M’s
log.and.save: 01CA D5 push d ; print-string function.
pop h 01CB 3624 mvi m,‘$’
mov a,m ; do until no more drives. 01CD 11 02AB Ixi d,showdate
cpi end.param 01DO CD01F3 call mess
jz warm.boot 01D3 0E01 mvi c.conin ; enter CR if OK
inx h 01D5 CD 0005 call bdos
push h 01D8 D1 pop d
dcr a ; make drive letter, ABC or 01D9 E1 pop h
ani make.bin ; abc, into 012 binary. 01DA 3600 mvi m,0 ; remove $ and restore
mov e,a ; null.
mvi eJog 01DC FEOD cpi cr ; return the zero flag.
call bdos ; log specified drive. 01DF enter2:

01DF 01 0201 Ixi b,conin2
mvi c,delete 01E2 enter: ; number of chars, in reg. b.
Ixi d.date.last.used 01E2 C5 push b
call save ; new date of use for this 01E3 E5 push h
jmpr log.and.save ; disc. 01E4 CD 0005 call bdos
9 01E7 E1 pop h
day.loc = todays.date + 3 ; this if the place in 01E8 C1 pop b

; the “Filename” where 01E9 FE21 cpi “ I ” ; exit to CP/M if space
; the actual date begins. 01EB DA 0000 jc warm.boot ; or control entered.

01EE 77 mov m,a ; otherwise store the char.
input: 01EF 23 inx h
Ixi d,day 01F0 10F0 djnz enter ; and repeat
call mess ; prompt for . . . 01F2 C9 ret
Ixi h,day.loc z
call enter2 ; today’s date (2 chars.) 01F3 mess:
mvi m, ‘ ’ ; separator 01F3 0E09 mvi c,conpr
inx h 01F5 CD 0005 call bdos
push h 01F8 C9 ret
Ixi d,month
call mess ; prompt for . . . ; prompt for entry of day
pop h 01F9 day:
Ixi b,conin3 .ascii ”
call enter ; month (3 chars.) 01F9 0D0A43522074 CR to exit, or-

fc fc fc fc fc Q

6F
2600
11 02C3
D5
01 000C
EDBO
D1
13
13
3E2D
12
CD 01C6
2815
3E2F

12

OEOE
1E00
CD 0005

0E13
11 027C
CD 0005
C3 0100

21 005D
E5

E1
7E
FE20
CA0000
23
E5
3d
E60F
5F
OEOE
CD 0005

0E13
11 0292
CD 01AC
18E1

11 01F9
CD01F3
21 02C6
CD01DF
362D
23
E5
11 022C
CD 01F3
E1
01 0301
CD 01E2

(continued on page 34)
Lifelines/The Software Magazine, July 198328

Lifeboat Handles PROWare"
Lifeboat is the foremost supplier of professional tools for the software developer. We
have the best and the most, including:

• compilers
• interpreters
• linkers
• program generators
• data base managers

• program editors
• cross-compilers
• emulators
• graphics interfaces
• and much, much more. . .

We carry all the popular standards, plus the rare but indispensables, plus some hot
products that nobody else has, including:

LATTICE™ C
The 16-bit C compiler that everyone’s raving about: faster than the competition, more complete (full implementation of
Kernighan and Ritchie) and with a growing product base. The language of the future for today’s fast, compact applica-
tions. . . . Order it with C Food Smorgasbord, a subroutine package including screen and I/O utilities. IBM® PC BIOS
utilities, and a BCD decimal arithmetic package. A complete development system, and no run-time or license fee.

HALO™
The emerging graphics standard in the PC-compatible world. A complete package of graphics subroutines with inter-
faces available for Basic. Basic Compiler. Lattice C. Fortran. Pascal, and Assembler. Add spectacular screens and
displays to your business, education or entertainment programs.

PLINKTM PLINK-II, PLINK-86
Two-pass linkage editors allow you to create programs larger than available memory using complex overlays.
Indispensable for the developer of large applications programs.

PMATE™ PMATE-86
The premier programmer’s editor, and a lot more. PMATE has a powerful built-in language allowing you to perform
complex text-processing functions at the touch of a single key. You can customize it to work just like your favorite
word processor, then add more features.

THE PROGRAMMER’S APPRENTICE™
Takes the drudgery out of applications programming, without cramping your style. Automates the design of input
screens and reports, links program modules into menu-driven systems, handles terminal definition and includes the
Micro B + TM Record Retrieval System. Generates customizable MBASIC source code.

PANEL™
A screen processor which generates source code for custom input screens equipped with entry editing, up to 9 field
attributes, up to 16 display attributes, and more. Includes terminal definition and multi-key file maintenance sytems.
Generates commented source code in PL/1. COBOL. C. or PASCAL for 8- or 16-bit systems.

Lifeboat Associates
1651 Third Avenue, NY. NY 10028 (212) 860-0300

TWX: 710-581-2524 (LBSOFT NYK) Telex: 640693 (LBSOFT NYK)

Prices and specifications subject to change without notice. Prices F.O.B. New York. Shipping, handling. C.O.D. charges extra. Lattice. TM Lattice. Inc. HALO. TM Media Cybernetics. IBM. reg. TM
International Business Machines. MS. TM Microsoft. Panel. TM Roundhill Computers. Micro B + . TM Fair Com. Programmers Apprentice. TM The Software Group. TM PLINK and PMATE.
TM Phoenix Software. Copyright (c) 1983 Lifeboat Associates.

Lifelines/The Software Magazine, Volume IV, Number 2 29

VARPTR Cuts Path to CP/M

(Note: Programs listed herein are copyright © by John S. Cog-
geshall, who retains the right to distribute them in any form.
The reader may put them to private use and incorporate them in
programs distributed without source code, but may distribute
copies of the listings in any form only with written permission of
the author. The reader may, however, use them in articles for
this publication if the author is acknowledged.)

▼ T IS OFTEN NECESSARY TO REACH CP/M'S BASIC
■ Disk Operating System (BDOS) facilities from a
■ high-level language like CBASIC or CB-80. This ar-
■ tide presents a user-defined function in CBASIC

JL that makes all BDOS services available through a
standard mechanism. The VARPTR function provides for
efficient execution, and the overhead committed is about
the same as for a specialized routine to obtain any one
BDOS service.

The arguments to our function—FNBDOS%—will be
the BDOS function-code and an integer to be passed in
the DE register pair. Obviously, this maps single-byte
arguments into register E where they belong. FNBDOS%
will return an integer whose low byte is the value returned
by BDOS in the A register and whose high byte is register
B. Thus access to the BDOS always has the same form,
whether data is exchanged or not. The price of this con-
vention, at worst, is negligible code and microseconds of
run time.

A reassuring word may be in order at this point; some
BDOS functions return (if anything) a single byte in
register A, others a word in the HL pair. Now the CP/M 2.0
Interface Guide states on p.3, "For reasons of compatibili-
ty, register A = L and register B = H upon return in all
cases." So far, so good. But can we be sure that register B
contains zero instead of garbage on return from routines
meant to deliver a single byte? The answer, it turns out, is
yes; and the two-byte integer constructed as above will
always have the correct value. Not satisfied with my own
results indicating this, I phoned Digital Research, Inc. and
spoke with Linda Haigh, who confirmed that the return-
ed value is defaulted to zero during the setup common to
all BDOS routines. All routines exit through a sequence
that loads the (possibly modified) value back into HL and
copies it into B and A. Thus there is no need to distinguish
between two-byte and one-byte routines. No end of suf-
fering and inelegance could doubtless have been avoided
had DRI mentioned this simple policy in the Interface
Guide.

The usage, then will be of the form:
BDOS.Return.Code°/o =FNBDOS%(Function.Code%, DE.Arg%)

CBASIC's CALL statement provides transfer of control,
but by itself gives no way to pass arguments or return
results. We must therefore construct a means of access to
CPU registers, for which there are no built-in statements

John S. Coggeshall

or functions; this requires an assembly-level program.
Such a program could be assembled and then brought in-
to memory with the powerful SAVEMEM statement; but
the program needed here is so short that it is simpler to
encode it as a string variable, obtaining its entry point
through the SADD function.

Naturally, we would like the code for FNBDOS% to be
both compact and brisk. One easy to achieve both com-
pactness and speed is to reduce the number of CBASIC
statements executed during an invocation of FNBDOS%.
The approach here is to use indirect register-load instruc-
tions to move the argument into DE and to return the
result, operating upon an integer variable in place. The
pointer (VARPTR) to the variable is patched into the
assembly program for this purpose during initialization.
Thus only integer assignment statements are required be-
fore and after each CALL in order to communicate those
values. The function-code is passed each time by patching
the program with a POKE statement.

Support for FNDBOS% consists of two "reserved"
global variables, which must not be reassigned: BDOS$,
the assembly program, and BDOSE%, its entry point.
(BDOSE% could be eliminated by calculating SADD
(BDOS$) twice on each call, at some penalty in speed.) In
addition, the global BDARG% needs no protection but
must exist and is modified by each call; we need it only for
its permanent address, and it could just as well be any
"junk" integer. It would be nice if we could use the dum-
my parameter itself, but its pointer is not constant because
it is local to FNBDOS%.

The only remaining unexplained feature used to in-
itialize for FNBDOS% is FNPOKE2%. It is so valuable for
communicating with assembly routines and for other
purposes that it has joined an INCLUDE file named
@EVRY.BAS. (Just about "evry" program needs this
module.):
DEF FNPOKE°/o(ADDR°/o, WRD%)

\ Poke 2-Byte Word to ADDR°/o (LoHi)
POKE ADDRo/o, WRD% REM Low byte
POKE ADDR°/o + 1, Peek(VARPTR(WRD°/o) + 1) REM High byte
RETURN

FEND

(CBASIC's and CB-80's implementation of a continua-
tion character is one of the beauties of the languages:
unless otherwise indicated, statements are terminated by
linefeeds. Treating the continuation character as a remark
is a further stroke of genius, providing an alternative to
the somewhat clumsy 'REM.' Has anyone estimated the
number of semicolons required by a useful program in
PL1, Pascal, or C? Not to mention the number of sym-
metrically paired special sequences they demand for com-
ments, such as 7*,' which either discourage comments or
make them an obsession. The purpose of a high-level
language is to do work for programmers, not to discipline
them.)

Lifelines/The Software Magazine, July 198330

BDS C
The fastest CP/M-80 C
compiler you can get

Version 1.5 contains some nifty improvements:
The unscrambled, comprehensive new User’s

Guide comes complete with tutorials, hints, error
message explanations and an index.

The CDB symbolic debugger is a valuable new
tool, written in C and included in source form. De-
bug with it, and learn from it.

Hard disk users: You can finally organize your file
directories sensibly. During compilation, take ad- __

1 vantage of the new path searching ability for all
1 compiler/linker system files. And at run-time, the
I enhanced file I/O mechanism recognized user
1 numbers as part of simple filenames, so you can
I manipulate files located anywhere on your system.

BDS C’s powerful original features include dy-
I namic overlays, full library and run-time package

source code (to allow customized run-time environ-
ments, such as for execution in ROM), plenty of
both utilitarian and recreational sample programs,
and speed. BDS C takes less time to compile and
link programs than any other C compiler around.
And the execution speed of that compiled code is
typically lightning fast, as the Sieve of Eratosthenes

I benchmark il lustrates. (See the January 1983
I BYTE, pg. 303).
I BD Software

P.O. Box 9
Br ighton, MA 02135

I (617) 782-0836

8” SSSD format, $150
Free sh ipp ing on pre-pa id orders
Call or write for availabil i ty on
other disk formats

If the foregoing tirade can be forgiven, we are now
equipped for FNBDOS% and its initialization:
FNBDOS°/o now provides, in a single function, direct access
to all of the BDOS services. This simplifies the performance
of a wide range of operations not implemented by CBASIC,
such as:

-- Customized, tightly controlled console input;
BDOS Function 6

-- Directory operations; Functions 17 and 18:
[Define DMA$, a 128-byte buffer]
Q°/o = FNBDOS°/o(26, SADD(DMA$) + 1)

REM Set DMA Address
[Format file name into FCB$, a 36-byte string]
DIRCODE°/o = FNBDOS°/o(17, SADD(FCB$)+ 1)

REM Search for First
WHILE DIRCODE%OOFFH

[Get matching file name out of DMA$ and put as desired]
DIRCODE°/o = FNBDOS°/o(18,0) REM Search for Next
WEND

-- Control of file attributes: “Read-Only” and “System” status; Function 30
- Access to files in any User Area; Function 32:

USER°/o = FNBDOS°/o(32.OFFH)
REM Get current User Code

Q°/o = FNBDOS°/o(32,U1°/o) REM Set User Code to #U1°/o
[Work with files or directory in User Area U1°/o]
q°/o = FNBDOS°/o(32, USERo/o) REM Back to original User

Typically, the programmer would implement the more
complex system calls as user-defined functions which in
turn invoke FNBDOS%. This approach can reduce the
time spent looking up function usage but, far more im-
portantly, guarantee the proper support for each BDOS
service request.

[Listing 1]
\ @BDOS.BAS

\ FNBDOS°/o, for generalized use of CP/M’s BDOS services
\ Requires @EVRY

\ Globals, used by FNBDOS°/o:
\ BDOS* and BDOSE°/o must not be reassigned
\ BDARG°/o for passing integers; needs no protection

\ Initialize Assembly program’ to be CALLed by FNBDOS°/o:
\ - All it really does is communicate between
\ -- CPU registers and CBASIC variables;
BDOS* = CHR*(OEH) \ LDC, FnCode

\ (to be POKEd before each CALL)

CALL BDOSE%
\ Returned value to BDARG°/o by indirect load
FNBDOS°/o + BDARG°/o
RETURN
FEND g

+ CHR*(21H) + \ LDHL, .BDARG°/o
+ CHR*(5EH) \ LD E,(HL)
+ CHR*(23H) + CHR*(56H) \ INC HL I LDD,(HL)
+ CHR*(0E5H) \ PUSH HL
+ CHR*(0CDH) + CHR*(5) +CHR*(0) \ CALL BDOS
+ CHR*(0E1H) \ POP HL
+ CHR*(70H) \ LD (HL),B
+ CHR*(2BH) + CHR*(77H) \ DEC HL I LD(HL),A
+ CHR*(0C9H) \ RET

LoByte
Hi Byte
Save addr

Hi byte
Lobyte

*Note: Double hyphen gets permanently patched with address

BDOS% = SADD (BDOS*) + 1 REM
BDARG°/o = O REM
\ Patch the code with its address:
Q°/o = FNPOKE°/o(BDOSE°/o + 3, VARPTR(BDARG°/o))

Entry point
For BDOS DE-arg and rtn code

DEF FNBDOS°/o(FCODE°/o,DEARG°/o)
\ For general calls to BDOS
\ Rtns: BDOS return-code; high byte from B register
\ (Registers A = L and B = H in all cases)
\ Usage: Rtn.code°/o = FNBDOS°/o(code°/o, arg°/o)
POKE BDOSE°/o + 1, FCODE% REM
BDARG% = DEARG°/o REM
Lifelines/The Software Magazine, Volume IV, Number

BDOS Fn Code
Arg; Io byte -) E

2 31

in a variety of sequences and totaling
schemes. It provides increased file
space through a data compaction
process.
Requirements: CP/M-80, Printed re-
ports require an 80-column dot-ma-
trix or letter quality printer.
Price: N/A

matrix printer to produce high-speed
drafts and working papers. PRINT is
used with a daisywheel printer to
PRINT. DISPLAY allows the user to
preview the document on the screen
with emphasis features displayed,
produce camera-ready copy and
final reports. Multipass printing
allows the printwheel to be changed
only ONCE per page per font.

Requirements: CP/M-80, 48K
Price: $300

VAAS
Vertec
PO Box 1116
8079 N. Lake Blvd.
Kings Beach, CA 95719

This integrated accounting package
is designed for insurance agencies. It
tracks sales and production volume,
performs accounting functions and
client profiling on a personal com-
puter. It provides historical data and
management reports for planning
and analysis of agency production.
VAAS is completely menu driven
and user friendly. It provides a full
complement of management re-
ports. The manual and software have
been integrated to provide an easy-
to-understand method of automat-
ing an agency.
Requirements: CP/M-80
Price: N/A

New Products

GraphPlan
Chang Labs
300 Stevens Creek Blvd. Suite 200
San Jose, CA 95129

This business package offers a
spreadsheet, built-in statistical com-
mands, presentation quality graph-
ics and sorting and ranking capabili-
ties. It has built-in formulas, auto-
matic generation of legends, numeri-
cal date, time and logarithmic X and
Y axis labels and tic marks. Presenta-
tion quality graphics such as ex-
plodable pie charts, horizontal or
vertical line and bar graphs with
stacking capability and scattergrams
can be created individually, or can be
combined. GraphPlan's spreadsheet
changes are automatically recorded
in the graphics, and the user can
switch between the spreadsheet and
the graphics with the push of a key
without exiting the program. It can
be used with MicroPlan.

Requirements: CP/M-80 or MS-
DOS, min. 64K-128K, one double sid-
ed disk with 330K bytes of storage.

Price: $395

DECISION ANALYST____________
EXECUTIVE SOFTWARE INC.
Two N. State Street
Dover, DE 19901

This new program assists profes-
sionals in analyzing complex busi-
ness problems where there are many
alternatives and criteria. It structures
the decision making process into log-
ical and easy to follow steps. The pro-
gram is designed for ease of use with
menu screens. It contains eight
menu selected sections including
problem definition, statement of
decision purpose, establishing and
valuing 'must' and 'want' criteria,
calculation of criteria values, defin-
ing alternatives, weighing and scor-
ing alternatives against criteria, and
final conclusions and choice. The
final reports are printed in polished
format. DECISION ANALYST is
written in CB80 with over 100,000
bytes of compiled code and a 40,000-
character help file.
Requirements: CP/M-80, CP/M-86,
or MS-DOS, 52K (96K with CP/M-86
and MS-DOS), a 24 X 80 column
screen and an 80 column printer.
Price: $139

EXPENSE TRAC _________________
OUTPUT Inc.
2401 E. Washington St.
Bloomington, IL 61701

This program automates fund ac-
counting procedures of school ad-
ministration, small profit and non-
profit organizations, and depart-
mentalized budgeting for divisions
of larger companies. It is written in
RM/COBOL. EXPENSE TRAC al-
lows users to define values for ac-
counting structures such as funds,
cost centers, and account numbers. It
maintains a master file of current bal-
ances for budgeted, expended, and
encumbered funds. It provides a de-
tailed audit trail printout summariz-
ing all transactions entered into the
system. It allows the user to see on-
screen displays of account balances,
account details, requisition details,
and vendor code details. It provides
up to 15 summary and detail reports

FileDriver
DUNBAR-RIDGE CORP.
102 Sterling Ct.
Syosset, NY 11791

This integrated set of comprehensive
file handling utilities for CP/M 2.2,
TurboDOS 1.2 and MP/M II operat-
ing systems can be accessed though a
menu-driven interface as well as
from the CP/M command line. File
Driver is disk format independent,
does not require any BIOS changes,
and does not interfere with other
programs the user may wish to run.
Its consistent syntax and facility for
specifying complex operations as
single-word commands makes the
package easy to learn and use. File-
Driver has the ability to access 31
user areas, automate complex user-
designed operations, move files be-

Lifelines/The Software Magazine, July 1983

TECHTYPE _____________________
Green Mountain Radio Research Co.
240 Staniford Rd.
Burlington, VT 05401

This multifont, text-formatting
system is designed especially for
scientific, engineering, mathemati-
cal, and multi-lingual document pro-
duction. It allows unlimited sub- and
super-scripting and has the ability to
mix up to ten fonts of the user's
choice. It also provides control of for-
mat, pitch, and emphasis and can
even address envelopes and mark
classified materials. The three prin-
cipal programs that make up TECH-
TYPE are DISPLAY, DRAFT, and
DRAFT is used with a multifont dot-

tween user areas without copying,
enter multiple commands on one
line, archive disk files, and keep a
disk file log of its operations. It also
allows access to multiple commands
without reading separate COM or
overlay disk files and allows for
groups of commands to be created
and executed in batch by accepting
input from a file created by a text
editor. FileDriver has disk mainten-
ance features to find and mark bad
sector areas and batch process utility
commands for creation of archival
and other file management systems.
FileDriver's utility commands in-
clude both new commands and very
enhanced functions of CP/M's 2.2
utilities.

Requirements: CP/M-80 2.2, Tur-
boDOS 1.2, orMP/M II.
Price: $75
Audit
E.F. Haskell & Associates
1528 E. Missouri Ave., A131
Phoenix, AZ 85014
This menu driven set of micro com-
puter tools is designed specifically
for independent and internal audi-
tors. It has a run-time interpreter, so
no other languages are needed.
Audit enables the auditor to instant-
ly determine lease types using a
flowchart analysis of Financial Ac-
counting Standards Board No. 13. It
maintains long-term depth schedul-
ing and a complete set of user design-
ed audit working paper forms up to
132 columns wide. It handles finan-
cial depreciation analysis and loan
amortization schedules. Audit
allows inventory volume analysis
computations and sorted random
number generation. In addition, it
allows the auditor to use the com-
puter as a calculator while using the
Audit system. Audit includes handy
routines to instantly convert from
one unit of measure to another.

Requirements: CP/M-80, MP/M or
TurboDOS, Z80 or 8080
Price: N/A

ed for optimization or "tuning" of
these methods, indications of ap-
propriate buy and sell signals on a
daily basis, and creation/validation
of relevant price history files. It in-
cludes the moving average method,
the Max/min methods the average
down/sell up method and the cor-
relation method. BUYSEL computes
commission for commodities on a
flat rate basis and for stocks and op-
tions a a rough percentage basis. The
menu structure lends itself readily to
experimenting on a single piece file
with different techniques.
Requirements: CP/M or CDOS, 64K
Price: $149.95

Z-80 Assembler
King Software
PO Box 208
Red Bank, NJ 07701
This CP/M compatible Z-80
assembler, plus a top-down tutorial
on the theory of assemblers features:
1) standard Zilog mnemonics 2) 19
pseudo-op's, including TITLE,
XLIST, and nested conditionals with
ELSE 3) Ability to accept a source
program split up into multiple input
files 4) Object file in standard Intel
Hex format 5) Listing of sorted sym-
bol table 6) Modular structure, allow-
ing easy revision as a cross-
assembler 7) Symbolic definition of
all important parameters (for exam-
ple, the number of characters in a
symbol), making it simple to adapt
details of language or syntax to in-
dividual preference.
Advanced Techniques explained in
the tutorial (with many illustrations
in pseudo-code) include: Radix 40,
expression processing by recursive
descent, Op-code analysis, binary
search of symbol table, character
table look-up, recursive processing
of nested conditionals.
The source listing for the assembler
is given in Z-80 assembly language,
fully commented. A direct transla-
tion into 8080 assembly language,
suitable for assembly by CP/M's
ASM, is also included. The complete
source code is also available on a
standard CP/M soft-sectored, single-
density 8-inch diskette.

Requirements: Z-80 CPU
Price: $37

New Books

Microcomputers Can Be Kid Stuff
Hayden Book Company, Inc.
50 Essex Street
Rochelle Park, N.J. 07662
Microcomputers Can Be Kid Stuff
enables young people to learn about
microcomputers and about how to
use them productively. Written by
Anna Mae Walsh Burke, the book
prepares youngsters to begin "speak-
ing" BASIC and Pilot with clear
descriptions and explanations of
microcomputer hardware and soft-
ware. Information on writing pro-
grams, saving programs on diskettes
or cassettes, and using commercial
software is also provided.

Price: $8.95

Bugs

The IBM-PC has a slight bug in its
ROM-BIOS; it is not possible to con-
vince the video BIOS functions that
you have both a monochrome and a
color monitor. This update changes
PCVSUM to "fake out" the BIOS so
that you can switch between the two
monitors.
1) Missing ENDS Statement
Tlie four statements of the assembly
language examples (pg 1-33 of the
manual) should read as follows:

XCFIND ENDP
XCMAKE ENDP

PROG ENDS
END

2)Use Call "_exit," not "exit." A
short version of "__main" is
presented (on p 1-38 of the manual);
however, the final statement before
the closing brace should read:

_exit(0)
If "exit" is called, the level 2 I/O func-
tions are included in the program.
Note that the correct version of this
function has now been supplied as
TINYMAIN.C.

BUYSEL ________________________
Single Source Solution
2637 Pleasant Hill Road
Pleasant Hill, CA 94523
This menu-driven package is
mathematical and statistical routines
for making specific buy and sell deci-
sions in the stock, commodities and
options markets. BUYSEL is intend-

Lifelines/The Software Magazine, Volume IV, Number 2 33

(continued from page 2)

However they are hard at work and are clearly a force to be
reckoned with in the months and years ahead.
The advent of eight bit softcards for sixteen bit machines
and the amount of eight bit software which has been
ported to sixteen bit machines explodes the myth that
software technology is keeping pace with hardware
technology.
Application programs continue to proliferate with no in-
dication that they will ever be supplanted by anything
other than more application programs.
Good databases for micros simply don't exist at this point,
although many are hard at work to provide them to what
is believed to be a phenomenally large market.
There is little evidence to support the belief that balancing
one's checkbook is a good or even interesting use for
microcomputers.
While matrix printers have continued to improve in print
quality they show no signs whatsoever of replacing
formed-character printers.

S100 machines continue to wane and while still powerful
machines have at best a limited lifetime. The additional
manufacturing costs, the larger physical size, the
diminishing techincal user base, etc., all reduce the
market demand for this once dominant form of hardware.
As more and more machines offer Lisa-like capability the
need for large CRT screens with higher resolution will
continue. Five inch portable machines are more likely to
result in a large number of people all of whom have poor
eyesight and one arm longer than the other. The concept
of the portable machine is apparently based upon the
assumption that anything moveable with a forklift is
portable!

Apple III is struggling but is rumored to be on the verge of
extinction, while Apple II clones continue to appear. Lisa,
while an innovative concept, seems far too expensive and
innovative to have the effect suggested by Apple fans.
As for the myth that IBM has missed the personal com-
puter market . . . need we say anything?
The IBM-PC while an exciting entry in the microcomputer
race, has not proven to be a true quantum leap in the hard-
ware technology. However its effects upon the microcom-
puter world have been incredible and every day new
technology arises as a result of IBM's lead.
Softcards continue to enjoy widespread use as an alter-
native to waiting for sixteen bit versions of eight bit pro-
grams to become available. It is paradoxical that one
would invest first in a sixteen bit computer, then in an
eight bit softcard which relegates the sixteen bit computer
to the role of expensive dumb terminal. But absent sixteen
bit softcard what other alternative is there ?

Microcomputers are increasing job opportunities enor-
mously and this trend shows every sign of continuing.
Microcomputers, as all other forms of computers, need
operators, programmers, system analysts, technicians,
etc. The micrcocomputer makes it possible to perform
many tasks much more readily but also causes most of us

to tackle more complex tasks. What self-respecting
microcomputer user would ever claim that he spends less
time working with a microcomputer? Microcomputers
have a tendency to function as infinte time sinks for most
of us.

It's sad but true that for all practical purposes documenta-
tion is never read. Authors have finally accepted this fact
and are now focusing on luring users back to the printed
page. Cartoons, detailed illustrations, four color artwork,
novel packaging, etc. are all being employed to this end.
As long as the technocrats are with us they will always in-
sist that the " _____________________" language makes
complex programming tasks trivial. Fundamental infor-
mation theory makes it clear that this is a myth but why
bother to explain this to them when we all know better?
Those of you who have had the misfortune to attempt to
translate eight bit assembly language problems to sixteen
bit environments are well aware that this is not a trivial
task and the results are often underwhelming. If all of this
seems rather confusing in terms of deciding how you are
to interpret the plethora of allegations and prognostica-
tions about the microcomputer world don't feel like the
Lone Ranger! As long as we are at the mercy of the pro-
phets, gurus, soothsayers, experts, geniuses and vi-
sionaries Pogo's observation will prevail, "We have met
the enemy and he is us. . . ." Time is the greatest validator
and in this industry it doesn't take long. The truth will
out, and soon! _____________________________________
(continued from page 28)
020B 0D0A456E7465 Enter date of day (2 chars.): $”

; prompt for entry of month
022C month:

.ascii“
022C 0D0A43522074 CR to exit, or-
023E 0D0A456E7465 Enter month 3 (chars.): $”

; prompt for entry of year
0259 year:

.ascii”
0259 0D0A2D2D2D2D ------ Enter year (2 chars.):$”

9

027C prev.date:
027C 012F2F3F3F3F .ascii [01] “//??????. ’??”
0288 000000000000 .byte [10.]0

0292 date.last.used:
0292 002F2F3F3F3F .ascii [0] “/-??????. ’??”
029E 000000000000 .byte [10.J0

; this message
; ends at
; end.todays.date.

02A8 showdate:
.ascii ”

02A8 0D0A
02AA 0D0A4F4B203F OK? Check years. CR = Y: ”
02C3 todays.date:
02C3 002F2F202020 .ascii [0]“// ’82”
02CF end.todays.date:
02CF 000000000000 .byte [10.]0
0100 .end start

OEOE

Lifelines/The Software Magazine, July 198334

Take ControlFeature

by Steven Fisher
OU FINISH UNPACKING YOUR NEW GIZMO-

6000 printer with its ten-character styles and
full graphics capability. The case looks good
and the paper goes in easy. You slip the data
cable into your trusty computer, turn on the

The utility programs you create this way won't let you
vary line spacing or character widths within a single ap-
plication program, but they do provide the ability to pre-
set the hardware features you want to use. Now you can
take control to get your money's worth from your system.

printer, press 'ON LINE' and then begin printing. Great!
Now you want to use those fancy features—but how?

Your printer needs to receive special control sequences
to engage its extra modes. You cannot modify your payroll
program check-printing module, nor do you want to hunt
for a contract programmer just to use your new hardware
features. But all is not lost, because you can easily make
this program send whatever character sequences you
want. Here's how it works:

The CONTROL program listed here may be modified
with the Dynamic Debugging Tool (DDT) supplied by
Digital Research with their CP/M-80 operating system.
There are two things to be modified within the CON-
TROL program: the device being controlled and the com-
mand being sent.

The CP/M-80 operating system can send one character
at a time to your console, to an auxiliary device (usually a
modem), or to your printer. The System Function number
selects the destination; the console is two (2), the auxiliary
is four (4), and the printer is five (5).

While the specific command character sequence is de-
termined by the needs of your hardware device and what
you want it to do, the format of the command is constant.
The CONTROL program expects a one-byte count of the
command characters, followed by the actual text to be sent
to the device. To send a formfeed to your printer, the com-
mand length would be 1 and the text would be the form-
feed character. Since DDT expects its data as base-16
numbers (hexadecimal), a formfeed command is 01 PC
for most printers.

Create the prototype CONTROL program with your
system editor, following the instructions in Figure 1. Then
create a FORMFEED program by typing what is
underlined:

Figure 1 — How To Create CONTROL Program

You can create a copy of the prototype CONTROL program by using the
standard utility programs furnished by Digital Research with their
CP/M-80 operating system. This initial CONTROL program is then
‘patched,’ or modified, to generate hardware-specific control code se-
quences for your console, printer, or modem. The operator input (what
you type) is underlined:

A>ED CONTROL.HEX
NEW FILE

:100100000E052114014605F8235EC5E5CD0500E185
:10011000C1C3060100000000000000000000000054
:1001200000000000000000000000000000000000CF
:1001300000000000000000000000000000000000BF
:1001400000000000000000000000000000000000AF
:10015000000000000000000000000000000000009F
:10016000000000000000000000000000000000008F
:10017000000000000000000000000000000000007F
:00010000FF

A>LOAD CONTROL
FIRST ADDRESS 0100
LAST ADDRESS
BYTES READ
RECORDS WRITTEN

017F
0080

01

Figure 2 — Sample Control Sequences

Here are control sequences for a few popular printers, starting with the
length of the command text (substituted at memory location 0114H).

Function Command

10-pitch for Anadex 02 17 12
12-pitch for Anadex 02 17 14
6-lines-per-inch for Anadex 02 1B 48
8-lines-per-inch for Anadex 02 1B 49
10-pitch forC Itoh 02 1B 4E
12-pitch for C Itoh 02 1B 45
17-pitch for C Itoh 02 1B 51
Proportional-pitch for C Itoh 02 1B 50
6-lines-per-inch for C Itoh 02 1B 41
8-lines-per-inch for C Itoh 02 1B 42
Begin emphasized print for C Itoh 02 1B 21
Cease emphasized print for C Itoh 02 1B 22
Begin enlarged print for C Itoh 01 12
Cease enlarged print for C Itoh 01 14
Begin underlined print for C Itoh 02 1B 58
Cease underlined print for C Itoh 02 1B 59
Alphabetic character set for C Itoh 02 1B 24
Greek character set for C Itoh 02 1B 26
Graphics character set for C Itoh 02 1B 23
10-pitch for Epson MX80/MX100 01 12
12-pitch for Epson MX80/MX100 01 OF
6-lines-per-inch for Epson MX 02 1B 32
8-lines-per-inch for Epson MX 02 1B 30
Begin emphasized print for Epson MX 02 1B 45

A>DDT CONTROL.COM
NEXT PC
0100
0200
- S0101 select which device is controlled
0101 05 05 (02 = console, 04 = aux, 05 = list)
0102 21 ± (a period stops memory substitution)
- S0114
0114 00 05 (enter the command length and text)
0115 00 PC
0116 00 ± (stop entry with a period)
- G0000 (reboot, leaving program in memory)
A>SAVE 1 FORMFEED.COM

You may want to include your configuration programs
into batch files for the Digital Research SUBMIT utility.
Select the proper line size and character width and then
print checks, for instance. Changing your work from a
series of stops to a procedure avoids errors, minimizes
training, and keeps things simple. Isn't that why you got
the computer in the first place?

(continued on next page)
35Lifelines/The Software Magazine, Volume IV, Number 2

Cease emphasized print for Epson MX 02 1B 46
Begin enlarged print for Epson MX 01 0E
Cease enlarged print for Epson MX 01 14
USA character set for Epson MX 03 1B 52 00
French character set for Epson MX 03 1B 52 01
German character set for Epson MX 03 1B 52 02
English character set for Epson MX 03 1B 52 03
Danish character set for Epson MX 03 1B 52 04
Swedish character set for Epson MX 03 1B 52 05
Italian character set for Epson MX 03 1B 52 06
Spanish character set for Epson MX 03 1B 52 07
10-pitch for InfoScribe 02 1B 36
12-pitch for InfoScribe 02 1B 38
10-pitch for Tl Omni-800 02 1B 36
12-pitch for Tl Omni-800 02 1B 37
6-lines-per-inch for Tl Omni-800 02 1B 34
8-lines-per-inch for Tl Omni-800 02 1B 35

; control data begins here
DB 0,0,0,0,0,0,0,0,0,0,0
DB 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
DB 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
DB 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
DB 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
DB 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
DB 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0

END SNDCTL H

Figure 3 — Assembler Language Source Program

OOPS! OOPS!
In last month's article A Review of Alpha Softwares Data
Base Manager, p.31, Table 3 was not included. Here it is
in its entirety.

Table 3—Data Management Capabilities
A. Underlying Data Model.

1. Data types.
Alphanumeric only. Type can not be specified.

2. Relationships.
None exist as part of file definition.

B. Functions provided.
la. Data dictionary maintenance.

No data dictionary exists. A header file is used to
record field names and lengths. Once established, only
the field names can be changed.

lb. Data reorganization and conversion.
No facility provided for either.

2a. Data entry and editing.
Uses Basic "INPUT" statement to read one field at a
time from keyboard. No programmatic edits are
provided, except for excessive length. Very poor
operator interaction.

2b. Report generation.
Maximum often reports can be defined, one of which
may be in mailing label format. Defined field length
must be used (no truncation). One sub-total and one
calculated field are allowed. Program will determine
column positions or user may override. No facility to
alter report format once defined. Suitable for only the
most trivial reporting requirements.

3a. Data selection by predicate.
Six relational operators are available to compare a
maximum of three fields with three constants in an
"and" relation. Separately, a selection may be made by
context or "sounds like."

3b. Data joining and relating multiple data sets.
No facility available.

3c. Calculation on data.
One of nine operations may be performed to calculate
one field on a report.

4a. Data independent interface.
None provided.

; CONTROL by Steven Fisher, CDP — device control routine.
; Used to set device attributes, like baud rate.
; For CP/M-80 systems, version 1.x or later.

; TO CREATE: ASM CONTROL
LOAD CONTROL

; TO CUSTOMIZE: DDTCONTROL.COM
9 S0101
9 xx ; 2 = con:, 4: = pun:,

; 5: = 1st:
9 . ; (MP/M has no pun:)
9 S0114
9 xx ; length of command text
9 xx ; enter command text
■ XX

9 . ; end with a period
9 G0000
9 SAVE 1 yourname.COM

BASE EQU 0000H ; bottom of memory
; segment

SYSTEM EQU BASE + 0005H ; entry point for system
TPA EQU BASE + 0100H ; transient program area
DSPLYF EQU 02H ; display char on console
AUXOUF EQU 04H ; send char to auxiliary
PRINTF EQU 05H ; print char on printer
SEND EQU PRINTF ; this controls printer

ORG TPA ; where the program
; starts

SNDCTL: MVI C,SEND ; function to send
; to device

LXI H,CMDLEN ; address of length
; to send

MOV B,M ; get length of text
SENDIT: DCR B ; when minus, no

; more left
RM ; if so then return to CCP

; to avoid delay of reboot
INX H ; point to next character
MOV E,M ; prepare to send it
PUSH B ; save count and function
PUSH H ; save address of

; this char
CALL SYSTEM ; send a character
POP H ; get address of byte sent
POP B ; get count and function
JMP SENDIT ; check for more

CMDLEN: DB 0 ; how many control bytes

36 Lifelines/The Software Magazine, July 1983

YOU SPENT $4,000 ON
A PERSONAL COMPUTER

FOR ANOTHER $12.50.
YOU CAN GET

TOUR MONEY’S WORTH.

No matter what you need
it to do.

More importantly,
LIST contains the LIST
Software Locator™ a com-
prehensive guide to over
3,000 personal computer
programs—conveniently
indexed by application,
industry, operating system
and hardware. You’ll find
detailed descriptions of
applications software that
pertains specifically to the
type of business you’re in.
And the type of needs
you have.

LIST is sold at leading
computer stores and book-
stores. Or, you can phone
our toll-free number (1-800-
821-7700, Ext. 1110) or
send in the coupon below,
and receive a copy by mail.
The price, exclusive of
postage and handling, is
$12.50.

Which, when you think
about it, is a pretty small
price to pay for something
that can maximize a much
larger investment.

LIST is published by
Redgate Publishing Company,
an affiliate ofE.F. Hutton.

And the software pro-
grams available to business
and professional people
number in the thousands.

But where do you go
to find them?

Today’s personal com-
puters have an extraordi-
nary range of capabilities.

Fora /up
variety of
reasons, v
however,
many busi-
ness people

are unaware of just how
much their computers are
capable of.

As a result, they aren’t
realizing the full potential of
their investment.
THE KEY TO GREATER

PRODUCTIVITY IN A
WORD: SOFTWARE.

Computers do the
work. Software does the
thinking.

Expanding the amount
of work a personal com-
puter can do is merely a
matter, then, of gaining
access to a broader array
of software.
© 1983 Redgate Publishing Company.

All rights reserved.

THE KEY TO SOFTWARE
IN A WORD: LIST.
LIST is the first pub-

lication that
puts software
first.

It contains
articles by some
of the most
respected
names in the
computer field.
Written to help
you get the
most out of your
personal com-
puter. No matter I
what brand it is. L

r I’D LIKE TO GET THE MOSTOUTOF 1
MY PERSONAL COMPUTER.

| Please send me ______ copies of LIST at $12. 50 a copy plus $2. 00
■ each for postage and handling. (Tax will be added where applicable.)
■ _____■ ____ VISA MasterCard (Interbank No)

Card No --- Exp. Date ------

Signature ---

Print Name ___

Address ___

City ------------------------------------ State ------------ Zip ------------
Send to LIST, Redgate Publishing Co. , 3407 Ocean
Drive, Vero Beach, FL 32960.
Or phone, toll-free: 1 800 821-7700 Ext. 1110

LIST
_ The Software Resource Book _

For Personal Computer Users

I
gS

S
econd C

lass P
ostage P

aid
At N

ew
 York, N

.Y.
Lifelines 7 The Softw

are M
agazine"

1651 Third A
ve., N

ew
 Y

ork, N
ew

 Y
ork 10028

X
P
I
R
A
T
I
O
N

D
A
T
E
:
 1
2
/
8
3

i jiM
in

i
m

m

■
iiiiiiiii l■

lll■
llll I liiani lll■

lll■
ll■

l

